
0- c89-0 131

000

00

NDTIC

VISUAL REPRSMTATIONS OF TE.URE E LECTE

FEB 1 7 1983ST D
Final Report AFOSR Grant 85-0359 .

(September 1, 1985 - November 30, 1988)

Part I

Jacob Beck

Department of Psychology
University of Oregon

Eugene, OR 97403

Part II

Kent A. Stevens

Department of Computer and Information Sciences
University of Oregon

Eugene, Or 97403

DM"'muroN 9TATEMENM
AProved for public reIeaso

Distribution Unlimited .

07 1,7=4j,

-,.. . -. ,m~m~mm mm '11 I I I In o,.



ITY CkASISIFICATION OF THIS G , -

- -REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION b. RESTRICTIVE MARKINGS

,ij .SECURITJ CLASSIFICATION AUTHORITY 3. DISTRIBUTION/ AVAILABILITY OF REPORT

2b. D EC LA SSIFICA TIO N / D O W N G RA D IN G SC H ED U LE ' .. . . - . . ." " " 
^  "  

. "

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

AMR-WT - .89-0 131
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Department of Psychology (If applicable) flFGj~ L
University of Oregon I___,,_

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Eugene, OR 97403-0237 L 4-

Ba. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9 PROCUREMEIk INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

AFOSR/NL * * I AFOSR-85-0359
8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM IPROJECT ITASK IWORK UNIT 4
Building 410 ELEMENT NO. NO. NO. ACCESSION NO

Boiling AFB DC 20332-6448 Q7, - I .,
11. TITLE (include Security Classification)

Visual Representations of Texture UNCLASSIFIED

12. PERSONAL AUTHOR(S)

Jacob Beck. Kent A. Stevens
13a. TYPE OF REPORT 113b. TIME COVERED 114. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT

Final I FROM9/],/I5 TO _1L3W 81 December 15, 1988 117

16. SUPPLEMENTARY NOTATION r- I

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP I

Vision, texture perception, texture segmej tation

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

-Oir research is concerned with understanding both the computational and reurophsiological

bases of texture segregation. During the grant period we have (a) conducted a series
of experiments investigating the interaction of size and contrast in texture segregation,
(b) compared our experimental results with the calculated outputs of a M Gabor model of |
simple-cell-like spatial-frequency channels, (c) established that the function describing

perceived segregation of a texture resulting from lightness differences of the texture
elements is not the same as the function describing the perceived lightness differences of
the elements. We also showed that the outputs of spatial frequency channels that predict
the perceived segregation of texture regions fail to predict the perceived salience of a
line composed of disconnected shapes embedded in a background of the same shapes.
The second part of the report describes work by Stevens on the earliest levels in the
extraction of geometric structure. The work has involved a computational and psychophysical
study of the role of retinal and c rtical spatial frequency filters in the extraction (over)1

20. DISTRIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

I%]UNCLASSIFIED/UNLIMITED C SAME AS RPT DTIC USERS Unclassified
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL

jnhn Tanne'v, (202) 767-5021 AFOSR/NL

DO FORM 1473,84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete.

<"- "'2 1 DUeIB



19. Abstract (cont)

of contour information. The specific areas reported concern: i) the differential roles
of radially-symmetric and elongated receptive fileds on the Cafe wall illusion, a
pattern that is useful for the induction of illusory brightness bands and orientation,
ii) a strategy for parsing of band-pass filtered images to differentiate line-like versus
edge-like luminance changes, iii) asserting orientation between discrete items, and
iv) connecting contour fragments across liminance gaps. Across these areas one common
theme is the importance of spatial gating nonlinearity.



I

I2

CONTENTS

Part I

1 1. Abstract 3

2. Research Summary 4
2.1 Introduction 4
2.2 Spatial-frequency channels in texture segregation 6

2.2.1 How spatial-frequency channels might explain
the area x contrast tradeoff 6

2.2.2 Simple spatial-frequency channels model 7
2.3 Experiments compared to predictions of simple

model 10
2.3.1 Area-ratios and background luminance 10
2.3.2 Line vs. square elements 12
2.3.3 Pattern density (duty-cycle) 13
2.3.4 Varying fundamental frequency (scaling) 14
2.3.5 Squares, circles, blobs, and aligned

vs. nonaligned squares 17
2.4 Patterns with no energy at the fundamental:

results and predictions of simple model 18
2.5 Patterns with same- and opposite-sign-of-contrast:

results and predictions of simple model 19
2.6 Complex spatial-frequency channels model 21
2.7 Comparison of perceived segregation and perceived

lightness 24
2.8 Global popout 26

2.8.1 Comparison of texture segregation and the
popout of lines 27

2.8.2 Popout experiments 27
2.8.3 Difference between texture segregation and

line detection 28

3 3. Publications ________ 30Accesion For

4. Professional Personnel NTIS CRA&I 31

~ . M'eetings UTIC TAB 0
5. MeingsU,:ed 31

6. References By_____ 33

Dibt; ib!;tifnI

Jvmi1_b~hty Cod es
I A tlor

Dist SvvcaII[

I



III

*3

1. ABSTRACT

Our research is concerned with understanding both the
computational and neurophysiological bases of texture segregation.
During the grant period we have (a) conducted a series of
experiments investigating the interaction of size and contrast in
texture segregation, (b) compared our experimental results with the
calculated outputs of a 2D Gabor model of simple-cell-like
spatial-frequency channels, (c) established that the function
describing perceived segregation of a texture resulting from
lightness differences of the texture elements is not the same as
the function describing the perceived lightness differences of the
elements. We also showed that the outputs of spatial frequency
channels that predict the perceived segregation of texture regions
fail to predict the perceived salience of a line composed of
disconnected shapes embedded in a background of the- same shapes.

The trade-off between size and contrast follows from the
hypothesis that strong preattentive texture segregation occurs
when spatial-frequency channels yield a large difference in mean
or modulated activity to two textures. Though overall the results
of our experiments were consistent with the hypothesis that texture
segregation occurs as a result of the differential stimulation of
spatial-frequency channels, aspects of the results from experiments
in which the fundamental frequency of the texture was varied,
textures containing elements of opposite contrast-sign, and
textures containing balanced elements with no energy at their
fundamental frequency were not consistent with the hypothesis.
These discrepancies suggest that our model was not making
sufficient use of information in the higher harmonic channels. One
way in which the information in the higher harmonics may be used
involves a more complicated spatial-frequency channels model. In
this model, each channel contains in addition to an initial
linear-filtering, a nonlinear rectification followed by a second
linear-filtering. Both filterings are selective for
spatial-frequency and orientation. We call these "channels
complex" to both distinguish it from the simple channels and
because this kind of channel is similar to current models of
complex cells. The complex channel model taking into consideration
the effects of light adaptation is able to account qualitatively
for all our discrepancies.

I A striking finding is that we have been able to construct
texture displays composed of elements differing clearly in
lightness which fail to yield perceived segregation. Equal
lightness differences can lead to markedly different degrees of
perceived segregation depending on the ratio of the background
luminance to the high-luminance square. The functions describing
the perceived lightness differences of the squares and the
perceived segregation of the texture displays are not the same
functions. Our experiments show that segregation ratings are aI
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function of the ratio of the contrasts of the high- to low-contrast
squares. Contrast is defined as the difference between the
luminance of the square and the luminance of the background,
divided by the luminance of the background. The relevant variable
for texture segregation is therefore the luminance increment ratio
of the target to the background. For perceived lightness, the
relevant variable is instead the luminance ratio of the target tothe background.

In a display composed of disconnected shapes, a line may
sometimes popout even though the shapes in the line do not differ
from the other shapes in the display and do not occupy a disjoint
region. The spacing between the shapes in the line and in the
background are also similar. The difference is that the shapes in
the line are approximately aligned and there is a greater density
of shapes in the direction of the line. In our texture patterns,
the arrangement of local properties is different in different
regions so that if the display is suitably filtered by convolving
the appropriate property at each point, or by performing some
equivalent filtering process in the Fourier domain, the regions in
the filtered display differ in different regions. This type of
computation does not appear to be able to account for the global
popout of lines of disconnected shapes in which the line does not
occupy a disjoint region of the display.

2. RESEARCH SUMKARY

2.1 Introduction

Models of texture segregation fall into three classes. In one
class of models, texture segregation is based on the geometric
features of a texture pattern. Beck (1972, 1982) and Marr (1976)
proposed that texture segregation is based on differences in
first-order statistics of simple features of a texture pattern such
as the slopes and sizes of texture elements or of their component
parts. Julesz (1981) has labeled such features textons and
proposed that there are three kinds: elongated blobs (e.g. line
segments), terminators (e.g. line terminations), and intersections
(e.g. crossings of line segments). In a second class of models,
the primitives for texture segregation are not geometric features
but the outputs of receptive-field-like operators. In many of the
models in this class, texture segregation is based on differences
in image statistics following convolution of a texture with
local, linear filters that have weighting functions like the
receptive fields of simple cells. A number of investigators have
proposed that texture segregation is, at least sometimes, directly
based on differences in the outputs of spatial-frequency channels
(e.g. Beck, Sutter, & Ivry, 1987; Caelli, 1985; Daugman, 1987;
Ginsburg, 1984; Graham 1981; Grossberg & Mingolla, 1985; Turner,
1986). Spatial-frequency channels are quasi-independent, parallel
channels composed of local receptive fields that are distributedI
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throughout the visual field and are alike in their sensitivity to
spatial frequency and orientation. The evidence that the visual
system analyzes a stimulus into a set of spatial-frequency
channels, and their usefulness in visual modeling has been reviewed3 elsewhere (e.g., Graham 1980, 1981, 1985).

In a third class of models, texture segregation is based on
differences in second-order statistics of the luminances at
different points in the texture. The second-order statistics of
a region are based on the joint probability distribution that a
pair of points separated by a given distance and orientation have
particular gray levels. Julesz's original conjecture (1975)
considered two gray levels and the extension of this conjecture
to patterns containing many gray levels must be done carefully
(Klein and Tyler, 1986). Julesz (1975) conjectured that textures
with the same global second-order statistics do not segregate, but
counter-examples to Julesz's conjecture have been found (Julesz,
Gilbert & Victor, 1978; Victor & Brodie 1978). Gagalowicz (1981)
pointed out that the counter-examples involve patterns in whichU local second-order statistics are not the same throughout the
pattern and differ from the global second-order statistics. He
hypothesized that textures which have the same local second-order
statistics throughout will fail to segregate. It should be noted
that if texture segregation is a function of only the amplitudes
and not the phases of the spatial frequencies, then the
spatial-frequency channel approach is closely related to models
based on second-order statistics.

Beck, Sutter, and Ivry (1987) investigated texture segregation
in a three-part (tripartite) pattern in which each part contains
approximately equal numbers of two different elements (large and
small squares in Figure 1). The textures to be segregated differed
in the arrangement of the two elements. In the top and bottom
regions, the two elements were arranged in vertical stripes. In
the center region, the elements were arranged in a checked pattern.
They reported four important findings: (1) Size and contrast are
not independent attributes but can cancel each other. For example,
large and small squares of equal contrast yielded strong texture
segregation. However, texture segregation was reduced greatly if
the contrast of the small square was increased so that the areal
contrasts (area x contrast) of the large and small squares were
equal. (2) A difference in sign of contrast yields strong texture
segregation. Squares of equal size whose luminances were above and
below the background luminance yielded strong texture segregation
even when the ratio of background luminance to square luminance was

*very close to 1.0. (3) Texture segregation does not vary directly
with the lightness difference of the squares. Equal size squares
differing by a large lightness difference failed to give texture
segregation, while the same squares differing by a smaller
lightness difference yielded strong texture segregation depending
upon the background luminance. (4) Hue is a weak feature for
texture segregation. In the absence of size and contrast
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differences, hue differences failed to yield strong spontaneous
texture cegregation. Our research has focused on investigating in
detail the first three of the above findings.

3 2.2 Spatial-frequency channels in texture segregation

When viewing the pattern in Figure 1, subjects reported
spontaneously segregating it into two textures-stripes in the top
and bottom regions and a checked region in the center (a perception
that we call ''tripartite segregation''). The segregation of the
pattern into three regions is not surprising and is explainable in
many ways. Of interest is what happened when the large and small
squares differed in contrast as well as size. Figure 2 shows the
same display with the contrast of the small squares increased. As
the contrast of the small squares increases starting at a value
equal to that of the large squares, perceived segregation
decreases. After sufficient increase in contrast, perceived
segregation reaches a minimum and then starts increasing again.
[Some results are shown in Figs. 7-9 and Beck, Sutter, & Ivry(1987).] The minimum tends to occur when the areal contrasts (area
x contrast) of the large and small squares were made equal.

I 2.2 1 How spatial-frequency channes might expain the area x
contrast trade-off

3 This trade-off between contrast and area suggested that
perceived texture segregation occurs strongly when a
spatial-frequency channel or channels yield a large difference in
activity to the striped and checked regions of the tripartite
pattern. The tripartite pattern is periodic repeating itself every
two columns. The left panel in Figure 3 shows a pattern having
unequal-size squares and equal contrast; the middle panel shows the
output of a vertically oriented spatial-frequency channel tuned to
the fundamental frequency of the striped region; and the right
panel the output of a higher spatial-frequency channel.
Specifications of the channel properties are given in Section
2.1.2. When the excitatory region of a receptive field tuned to
the fundamental frequency of the pattern is centered over a column
of large squares, the receptive field is strongly stimulated by the
large squares and weakly inhibited by the small squares. When the
excitatory region is centered over a column of small squares, the
receptive field is weakly stimulated by the small squares and
strongly inhibited by the large squares. Thus, the middle panel
shows strongly modulated activity with high outputs at the center
of the large-square columns and low outputs at the center of the
small square-columns.

When the excitatory region of a vertically oriented receptive
field is centered over either a large or a small square in the
checked region of the pattern, the amounts of excitation and
inhibition are approximately equal. Thus, the output at eachI
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spatial position is about the same, and there is little modulated
activity (see middle region of output in middle panel of Figure 3).
Channels tuned to higher harmonics of the pattern (right panel of
Figure 3), respond to the edges of the squares in the pattern.
Though there is a difference in the spatial arrangement of the
outputs in the striped and checked regions, there is no difference
in the amount of overall activity.

Figure 4 is like Figure 3 except that the contrast of the
small squares in the pattern is now 4 times that of the large
squares (so the areal contrasts are equal). Now when the
excitatcry region of a receptive field from the channel tuned to
the fundamental frequency is centered over either a large or small
square in either the striped or checked regions, the output is
about the same since the greater contrast has balanced out the
smaller size of the squares. The output of the higher-harmonic
channel (right panel) looks much like that in Figure 3.

We conjectured that spontaneous strong texture segregation
occurs only when there are differences in the mean or modulated
activity of a channel or channels to the striped and checked3 regions of the tripartite pattern.

2.2.2 Simple spatial-frequency channels model

3 The challenge was to find a quantitative model that will
predict the observer's ratings of perceived segregation. To do so
requires, at the least, considering the responses of all the
filters. These responses are displayed in summary form in Figure
5 by taking a period from the middle of the checked region on any
one filter's outputs (as in Figure 3) and another period from the
middle of the striped region of any one filter's outputs and then
displaying this pair of periods for each of the different filters.
Figure 5 shows the outputs of 39 filters resulting from the
combination of thirteen different spatial frequencies (from left
to right in 13 columns in Figure 5) and three different
orientations-vertical, 45 degrees oblique, and horizontal (from
top to bottom in three pairs of two rows each).

I Figure 5 shows responses to the unequal-size equal-contrast
pattern in Figure 1. (The large square is 4 times the area of the
small square and the contrasts of the squares are equal.) As
discussed in the previous sections, the vertically oriented
channels sensitive to spatial frequencies near the fundamental
frequency of the pattern (1.0 and 1.41 cycles/deg) show strongly
modulated activity in the striped region and little modulated
activity in the checked region. Strong modulated activity occurs
in the checked region for channels sensitive to the fundamental
oblique frequency (greater by the square root of 2 than the
fundamental vertical frequency-1.41 and 2.0 cycles/deg) and little
modulated activity in the striped region. For lower spatialI

I
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frequencies whose periods are larger than the fundamental period,
there is little response to either the checked or striped regions
by either the vertical or oblique channels. The receptive fields
are so large that they average over adjacent rows and columns of
squares. (Some slight mean output differences between checks and
stripes are visible-especially in the lower left of Figure 5.
These are responses by very large receptive fields to the edges of
the tripartite pattern. The differences are caused because striped
patterns were always near the horizontal edges of the filtered
patterns.) Spatial frequencies whose period is smaller than the
fundamental period respond near the edges of all the squares in
the pattern. Although the pattern of the activity is distributed
differently in the striped and checked regions, the amounts of
modulated activity to the striped and checked regions by the

* vertical and diagonal channels are similar.

Figure 6 shows the filtered outputs to the pattern in Figure
2 in which the products of the areas x contrasts of the large and
small squares are equal. (The large square is 4 times the area of
the small square; the small square is 4 times the contrast of the
large square.) As discussed in the previous subsection, the
vertical 1.0 and 1.41 cycles/deg and the oblique 1.41 and 2.0
cycles/deg channels show no modulated response to either the
checked or striped regions of this pattern. There. is no
information in the amount of modulated activity for segregating
the tripartite pattern into distinct regions.

Characteristics of Channels.--Each channel is assumed to be a linear,
translation-invariant filter. We modeled the receptive-field
weighting functions by two-dimensional Gabor functions (as used,
for example, by Daugman, 1985; Watson, 1983). The weighting
function in one direction is a Gaussian multiplied by a sinusoid
and in the perpendicular direction a Gaussian. The parameters of
the model we have implemented follow Watson (1983) in that the
spatial-frequency half-amplitude bandwidth is one octave and the
orientation half-amplitude bandwidth is 38 degrees. In Figures 5
and 6, the variation in sensitivity with spatial frequency is not
represented but is in the calculations of the model. Our model is
less complete than that of Watson in two respects: the fields haveeven symmetry, and we have not incorporated the decrease in acuity
occurring with retinal eccentricity.

U Combinig the Outputs of Many Channels to Predict the Observer's Rating. --we now
wanted to turn these channel outputs into a quantitative prediction
of the observer's ratings of perceived texture segregation. Our
first attempt is a crude measure of the degree to which there are
gross difference between the outputs of one or more filters to the
two different texture regions. This simple model can be seen as
an elaboration of Julesz's (1972) original statistical conjecture
and is rather in the spirit of recent attempts by a number of
investigators (e.g., Caelli, 1982; Daugman, 1987; Turner, 1986) to
use spatial-frequency filters to predict results from a number of
early texture patterns. It differs from this earlier theoretical

I
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work in attempting to generate quantitative predictions of the
strength of perceived texture segregation (rather than just
distinguishing textures that would segregate from those that
wouldn't at all) so that these quantitative predictions can becompared to empirical results in a rigorous way.

(i) Our simple model first computes the output of channels that
are linear, translation-invariant filters tuned to many
different spatial frequencies and orientations as described
above. Let the output at position (x,y) of the channel tuned
to the Ph frequency and the jP orientation be called Oij (x,y).

(ii) The model then computes a spatially-pooled response of each
channel to the checked and to the striped region; in
particular, the standard deviation of the outputs at
different spatial position is computed. For example, the
spatially pooled response of the i channel to the
checkerboard region is

NN (O,V(Z,1)_E(O,W))2

in checked
region

where N N are the numbers of spatial positions in the x and
y directions in one period of the pattern and the summing is
done over the checked region. The model then takes the
difference between each filter's spatially-pooled response
to the checked and to the striped region yielding a
within-filter difference for the ir filter of

1Dff, =RV(ch)-R,(at)

(iii) The model combines (pools) these within-filter differences
cross many spatial frequencies and orientations of filters,
weighting the differences according to the observers'
sensitivity to different orientations and spatial frequency:
So, the predicted value equals a pooled weighted sum of
within-filter differences. In particular, the predicted
value equals the following quantity:I

E(Diffj ,S b.(f 2

where So (f,Oj) is the sensitivity of the observer to the eh
frequency and jt orientation, Nf is the number of frequencies
(13--from .5 to 16 cycles/deg in square-root-of-two steps)
and No is the number of orientations (3--vertical,

I
I
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45-degrees, and horizontal).

(iv) Finally the model assumes that the observer's ratings of
perceived segregation are monotonically related to the
predicted value shown above.

Note. We tried exponents of 1, 3, 4 in the above equations (both
for spatial-pooling and for pooling across channels) as well as
using the maximum, the minimum, or the maximum-minus-minimums.
Conclusions using any of them were identical to those illustrated
here with an exponent of 2. It should also be noted that the model
we are investigating specifies the information for texture
segtregation but does not provide a procedure for locating texture
boundaries since it does not address the question of how the
information is used to segment a pattern into regions. This is a
problem discussed by Caelli (1985), Grossberg & Mingolla (1985),
and Grossberg (1987).

I 2.3 Experiments compared to predictions of simple model

Methods and Procedures. -- The procedure and instructions were
similar to Beck, Sutter, & Ivry (1987). Except where noted the
background luminance was set at 16.1 ft.-L and appeared gray. The
intensity of one kind of texture element (e.g., the large squares
in Figures 1 or 2) was kept constant while the intensity of the
second kind of texture element (e.g., the small squares in Figures
1 or 2) was varied. When the texture elements differed in size,
the constant-luminance element was always the larger element and
the variable-luminance element the smaller element. Except where
noted the fundamental frequency of the patterns was about 1 c/deg
(the period was 56 pixels and at the viewing distance of 6 feet,
1 pixel subtends 1.08 minutes). In each experiment, 10 subjects
rated the perceived texture segregation of each pattern 5 times on
a 5-point rating scale. Each pattern was shown for 1 second. In
between patterns the screen was at the background luminance. All
the patterns in a given experiment were randomly intermixed.

The contrast of an element is defined here to be the luminance
of the element minus the luminance of the background divided by the
luminance of the background. (This is the quantity that Shapley
& Enroth-Cugel 1985 called Weber contrast.) The horizontal axesin all the figures show the contrast ratio of the variable-intensity to fixed intensity elements.

2. 3. 1 Area-ratios and background luminances

Three experiments investigated texture segregation as a
function of contrast and background luminance. In one experiment(Sutter, 1987), the textures were composed of either two 16-pixelsquares or of one 16- and one 8-pixel squares. Thus, the element

I
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area-ratios in the first experiment were 1:1 and 4:1. The squares
were presented on a white (32.3 ft.-L) and on a black (.05 ft.-L)
background. The luminance of fixed-intensity squares was set at
values close to the background (28.1 ft.-L. for the white
background and .26 ft.-L. for the black background) or far from the
background (24.06 ft.-L. for the white background and 2.44 ft.-L
for the black background). The luminances of the variable-
intensity squares were always equal to or below the white
background (.2 to 28.1 ft.-L for the close condition and .2 to
24.06 ft.-L. for the far condition) and always equal to or above
the black background (.62 to 6.72 ft.-L. for the close condition
and 2.44 to 32.2 ft.-L. for the far condition). Figure 7 presents
the results with a white background and Figure 8 with a black
background. The results are consistent with the earlier findings
of Beck, Sutter, and Ivry (1987) and are in accord with the
predictions of the simple model. For the textures composed of the
16 and 8 pixel squares, segregation was a u-shaped function, with
a minimum around the point at which the squares were of equal areal
contrast. For the textures composed of equal size squares (both
squares 16 pixels), segregation increased steadily as the luminance
of one square increased. The increase was slower on a background
than on a white background. A possible reason for this difference
is that because of early response compression the effective
contrast of the squares on a black background reaches a maximum
which does not increase with further increases in luminance.

Two further experiments (Sutter, Beck, & Graham 1988)
investigate the interaction of contrast and size in texture
segregation by using four different element area-ratios: 1:1 (both
squares were of the same size--16 pixels or approximately 16
minutes on a side), 1.78:1 (16 x 16 pixels and 16 x 12 pixels), 4:1
(16 x 16 and 8 x 8) and 16:1 (16 x 16 and 4 x 4). In the first
experiment (results shown in top panel of Figure 9), the patterns
were presented on a black background of .05 ft.-L and the luminance
of the fixed-intensity squares was set at .26 ft.-L. The variable-
intensity squares were always above the background and ranged from
.26 ft.-L. to 32.2 ft.-L. In the second experiment, the patterns
were presented on a gray background of 16.1 ft.-L, and the
luminance of the fixed-intensity squares was held constant at 2
ft.-L. above or below the background (18.1 or 14.1 ft.-L.,
respectively). The variable-intensity squares were presented
above (middle panel of Figure 9) and below (bottom panel of Figure
9) the background. The luminanca of the variable squares was set
at 1 of 7 values ranging from .03 to 14.1 ft.-L. for the squares
below the background and from 18.1 to 32.2 ft.-L. for the squares
above the background. The element contrast ratios varied in stepsof 2'1.

Figure 9 shows that perceived segregation is, in general, a
u-shaped function with the minimum depending on the relative size
of the square and shifting to larger contrast ratios as the element
area-ratio increased. For an area-ratio of 1, the minimum

I
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perceived segregation occurred when the contrast ratio was 1. For
an area-ratio of 1.78:1, the minimum occurred between 1 and 2. For
4:1, the minimum occurred between 2 and 4, and for 16:1, the
minimum occurred at approximately 20:1. This pattern of results
is consistent with the simple model. (The minimum is. not predicted
to occur precisely at the point of equal a real contrast for these
patterns because the large squares were larger than the space
between them.)

Note that the size difference of the squares also affected
texture segregation. For example, the perceived segregation at the
minimum in the top panel (black background) increased as the
element area-ratio increased ranging from .20 for the 1:1
area-ratio to 1.85 for the 16:1 area-ratio. That is, the steepness
of the trough decreased as area-ratio increased. This dependence
is not consistent with the simple model; it predicts that functions
for all area-ratios should dip down to approximately the same very
low value. We will return to this dependence in our discussion of
the complex model (page 22).

Some minor differences among the three panels of Figure 9
may be other effects of response compression for luminances far
above the background luminance. For example, perceived segregation
increased for contrast ratios higher than that at the minimum
except for the 16:1 condition where the luminance of the small
square was becoming extremely high by the time the perceived
segregation reached a minimum.

2.3.2 Lines vs. square elmenu

This experiment investigated whether there are differences
in perceived segregation as a function of whether the texture
elements are squares or lines (Sutter, Beck, & Graham (1988). Four
patterns composed of squares and four composed of lines were
presented. In the textures composed of squares, the
fixed-intensity elements were always 16 x 16 pixel squares. The
variable-intensity elements were 16 x 16, 11 x 11, 8 x 8, or 4 x
4 pixel squares. (Each pixel is approximately 1 minute of visual
angle.) In the textures composed of lines, the fixed-intensity
elements were always lines of width 2 pixels and height 16 pixels.
The other elements were all lines of width 2 pixels; the heights
could be 16, 11, 8, or 4 pixels. The center-to-center separation
of the squares and lines was 28 pixels. The variable-intensity
elements were always above the background. The luminances of the
background and the fixed- and variable-intensity elements were the
same as in the gray background experiment in Section 2.3.1 (page
11).

Figure 10 shows the mean ratings of the textures composed of
squares (top) and lines (bottom). As in the earlier experiments,
and as predicted by the simple spatial frequency model, perceivedU

I



Squores

6f"fr SIZES

0 16911 : /.:

* IBM pie.s/16:1

Contrast Ratio (High Contrast Sq/Law1 Contrast 5q)

I Lines (2 pixels wide)
ELEMENI LENGtHS/IBIS RAIO

0 161L16 91ix11:1
0 16111 pixelsIA.S:

Ts a M61pmala/2:1

I Gi 2.5
a) 'W)

Ln II ) 1 .

Contrast Ratio (High Contrast In/Low Contrast In)

FIGURE 10



1 13

segregation depends on differences in areal contrast (contrast
times area) between the texture elements with minimal segregation
occurring at the point where the areal contrasts of the large and
small elements are approximately the same. Patterns composed of
squares produced better segregation than patterns composed of
lines. This result was also found by Beck, Prazdny and Rosenfeld
(1983) and is predicted by the simple spatial-frequency model. It
follows from the fact that the lines occupied a smaller area of the
pattern than the squares and activation of the spatial frequency
channels was thus "diluted" by the background.

The interaction of element area and contrast supports the
argument that the segregation of patterns composed of different
arrangements of lines is not attributable to "emergent" features
of the elements. If segregation of the line patterns had depended
on the linking of the longer (16 pixel) lines into emergent, even
longer lines, segregation should have been an increasing function
of the contrast ratio between the elements, regardless of their
area-ratio, since greater differences in contrast would have
increased the linking of lines based on similarity of contrast.

For the textures composed of squares, the size difference of
the squares affected perceived segregation. Figure 10 (top) shows
that the minimum segregation ratings increased with the size
differences between the squares in the pattern. This result is not
explained by the simple model. For the textures composed of lines,
however, Figure 10 (bottom) shows that the size difference of the
lines did not yield different minimum segregation ratings. This
is in accord with the simple model. A reason for this difference
in results will be proposed when we present the complex model (page
23).

2. 3. 3 Paaern density (duty-cyce)

Seventy patterns were constructed through the combination of
2 element area-ratios (1:1 and 4:1), 5 large-square-sizes (12, 10,
8, 6, and 4 pixel squares), and 7 contrast-ratios. Thus, for the 1:1
element area-ratio condition, the patterns were composed of two
sets of equal size squares of 12, 10, 8, 6, or 4 pixels on a side
(12.96, 10.80, 8.64, 6.48, and 4.32 min, respectively). In the 4:1
element area-ratio condition, the patterns were composed of 12
pixel and 6 pixel squares, 10 pixel and 5 pixel squares, 8 pixel
and 4 pixel squares, 6 pixel and 3 pixel squares, or 4 pixel and
2 pixel squares. The center-to-center element spacing was held
constant at 14 pixels (15.12 min), thus creating patterns that were
approximately 4 degrees in width and height. The variable-
intensity elements were always above the background. The
luminances of the background and the fixed- and variable-intensity
elements were the same as in the gray background experiment in
Section 2.3.1 (page 11).

Figure 11 (top panel) shows the mean segregation ratings forI
U
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the 1:1 element area-ratio condition, and Figure 11 (bottom panel)
shows the mean ratings for the 4:1 element area-ratio. As in
previous experiments, perceived segregation for the 4:1 element
area-ratio was a u-shaped function and minimal at or around the
point at which the areal contrasts of the large and small squares
were equal. For both the 1:1 and 4:1 element area-ratios,
perceived segregation decreased with decreasing density (decreasing
element size). This result is consistent with our simple model.
Decreasing element density dilutes the effect of contrast
differences between the elements because there is more background
space. This would result in greater uniformity in the outputs of
spatial-frequency channels corresponding to the fundamental period
of the striped and checked regions. This should, and in fact did,
produce poorer segregation. However the basic tradeoff between
area and contrast remains. As in previous experiments, one aspect
of the results was not predicted by the simple model. Texture
segregation was also a function of the size difference between the
large and small squares. The u-shaped functions are shallower as

* the size difference between the large and small squares increased.

2.3.4 Varying the fundamental frequency (scaling)

I Normally texture patterns scale in the sense that perceived
segregation remains constant with changes in the visual angle
subtended. Wertheimer (1923) observed that the grouping of a set
of elements does not change with viewing distance or the
magnification of the pattern. Green, Wolf, and White, (1959) also
found that, as long as the relative element sizes and separations
remain constant the absolute size of the pattern does not affect
texture discrimination. In contrast, Beck, Prazdny and Rosenfeld
(1983) found that patterns like Figure 1 fail to scale. When the
sizes and separations of the squares were reduced by one-half,
perceived segregation increased. This indicates that segregation
depends on the absolute sizes of the elements and their

* separations.

This observation is consistent with the view that perceived
segregation is mediated by the outputs of spatial frequency
channels. Contrast sensitivity is generally highest at a spatial
frequency ranging from 3-10 cycles/deg, depending on experimental
conditions. The standard tripartite pattern (Figures 1 and 2) had
a period of 56 pixels (the distance between the centers of two
columns of the same type of square), which translates to
approximately 1 cycle/degree. Figures 5 and 6 show that the
spatial frequency channel that gives the best information for
segregation is one that matches the period of the pattern. For the
standard tripartite pattern, this channel would have peak output
at a spatial frequency of around 1 cycle/degree. By either
increasing the viewing distance or proportionately decreasing the
sizes of the elements and their separations, the period of the
pattern can be decreased, thus increasing the spatial frequencyI
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which carries the most information about differences between the
striped and checked regions of the pattern. Reducing the period
of the pattern should increase perceived segregation, up to the
point where the fundamental frequency component of the pattern has
a spatial frequency at the peak of the contrast sensitivity
function. Further reduction of the period of the pattern should
lead to a decrease in perceived segregation because the fundamental
frequency component of the pattern will be of a spatial frequency
that is higher than that at the peak, thus entering a range where
contrast sensitivity decreases.

We tested this prediction of the spatial frequency model.
The period of the tripartite pattern was reduced by decreasing the
sizes and separation of the squares making up the pattern. The
effects of contrast differences between the two types of squares
were investigated under 3 element area-ratio (1:1, 4:1, and 16:1)
and 4 fundamental frequency conditions (1, 2, 4, and 8
cycles/degree).

Seventy-seven stimuli were constructed through the partial
combination of 3 element area-ratios (1:1, 4:1, and 16:1), 4
fundamental-frequencies (1, 2, 4, and 8 cycles/degree), and 7
contrast-ratios. The 3 element area-ratio conditions were
equal-size squares (1:1 element area-ratio), unequal-size squares
with a ratio of areas of 4:1, and unequal-size squares with a ratio
of areas of 16:1. The 4 fundamental-frequencies were 1, 2, 4, and
8 cycles/degree, which corresponded to center-to-center element
separations (one-half periods) of 28 pixels (30.24 min), 14 pixels
(15.12 min), 7 pixels (7.56 min), and 4 pixels (4.32 min),
respectively. The center-to-center element separation was held
constant at 1.75 times the width of the largest square in the
pattern. The 4 largest square sizes were 16, 8, 4,. and 2 pixels on
a side (17.28, 8.64, 4.32, and 2.16 min, respectively). The effect
of reducing the element size and separation was to decrease the
size of the whole pattern, as well as its period. The patterns
with a fundamental frequency of 1 cycle/degree measured 7.56
degrees in height and width. The patterns with
fundamental-frequencies of 2, 4, and 8 cycles/deg measured 3.78,
1.89, and 1.08 degrees, respectively, in height and width. The
variable-intensity elements were always above the background. The
luminances of the background and the fixed- and variable-intensity
elements were the same as in the gray background experiment in
Section 2.3.1 (page 11).

The results are presented in Figure 12 for the 1:1, 4:1,
and 16:1 element area-ratios. As in the previous experiments,
perceived segregation is a u-shaped function of contrast ratio,
with a minimum around the point at which the areal contrasts of
the two texture elements are equal. Figure 13 shows the predicted
segregation values produced by the simple spatial frequency model.
A comparison of the predicted and observed segregation curves shows3 that the general shapes of the observed segregation curves for each

I
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element area-ratio are fairly well predicted by the model, as are
the contrast ratios at the points of minimum segregation for the
three element area-ratios.

Figures 12 shows that perceived segregation of the patterns
varies with their period. Some aspects of this variation in
perceived segregation are predicted by the simple spatial frequency
model (Figure 13). According to the model, the pattern which
should be most easily segregated, at a given contrast ratio, is
that whose fundamental spatial frequency component is approximately
4 cycles/degree. Patterns with higher or lower fundamental
frequency components should be more difficult to segregate. This
prediction is consistent with many of the observed segregation
ratings, with a few striking exceptions in the 4:1 and 16:1 element
area-ratio conditions. The effects of changing the fundamental
frequency were also found with patterns of constant size. Instead
of reducing the overall size of the patterns, the overall size of
the patterns was maintained by increasing the number of rows and3 columns of elements (Sutter 1987).

The contrast-ratio at which minimum observed segregation occurs
* in these conditions is well-predicted by the model, but notice that

the observed segregation curves cross-over dramatically, while the
predicted curves just move up or down, for the most part, depending
on fundamental frequency. For very low contrast ratios, the'
ordering of curves is roughly from the most visible on top to the
least visible fundamental frequencies (as was built into the model
by weighting the predictions by a particular sensitivity function).
In the trough, however, the ordering is different; patterns having
low fundamental frequencies still segregate quite well
(contradicting the model) while patterns with high fundamental
frequencies don't segregate at all (agreeing with the model).

This discrepancy between the simple model's predictions and
the results of varying fundamental frequency is probably closely
related to another discrepancy mentioned near the beginning of this
section--namely, for patterns with a fundamental frequency of about
1 c/deg, the dip in the u-shaped function becomes less pronounced
as the area-ratio becomes higher or, equivalently, as the
difference between the sizes of the squares becomes larger. The
relation between the two discrepancies will become clearer below
when we propose the complex model (page 24). Roughly, the idea is
this: for low fundamental spatial frequencies of textures, the
information at the higher harmonics (transmitted by channels
sensitive to the higher harmonics (e.g., the right hand side in
Figures 5 and 6) is available to the observer and does help to
segregate the patterns (although this kind of information is
totally ignored by the simple model). At high fundamental spatial
frequencies, however, the higher harmonics of the texture patterns
are invisible to the observer so cannot contribute.

I
I
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2. 3. 5 Squares, circles, blobs, and aligned vs. non-aligned squares

Perceived segregation of the tripartite pattern depends on
the detection oZ the difference in the arrangement of elements in
the striped and checked regions of the patterns. The channels
showing strikingly different outputs to the different arrangement
of elements in the striped and checked regions are at the
fundamental period of the pattern. The outputs from the higher
spatial-frequency channels have very little affect on perceived
segregation. Although the pattern of activity is distributed
differently in the striped and checked regions, the amounts of
modulated activity in the striped and checked regions are similar
at the higher spatial-frequencies. Channels tuned to the higher
spatial-frequencies respond to the edges of the elements in a
pattern. Therefore, altering the contours of the elements should
only have a minor effect on the perceived segregation.

An alternative explanation proposed by Grossberg and Mingolla
(1985) explains perceived segregation of the tripartite pattern as
the result of complex interactions within a Boundary Counter System
(BC) system. According to Grossberg and Mingolla, the boundaries
generated by the BC system need not be visible. In the case of
tripartite patterns, Grossberg and Mingolla argue that the BC
system creates invisible elongated, vertical, boundaries in the top
and bottom regions and invisible diagonal boundaries in the middle
region of the tripartite pattern. These invisible boundaries are
the basis for the perceived segregation of the tripartite pattern.
Perceived segregation should, therefore, be significantly affected
by changing the contours of the elements. The invisible boundaries
formed in the BC system would be expected to be formed more
strongly when the elements of the patterns are aligned than when
they are not aligned.

Two experiments investigated the effect of element contour
alignment on perceived segregation. In the first experiment, the
elements were squares, circles, and blobs. Two area-ratios were
investigated: 1:1 and 4:1. In the patterns composed of squares,
the fixed-intensity square was 16 pixels on a side. The variable-
intensity squares were either 16 or 8 pixels on a side. The circle
and blob stimuli were equated in area to the squares. Figure 14
shows the 1:1 square, circle, and blob patterns. The center-to-
center separation of the elements was 28 pixels. The variable
intensity elements were always above the background. The
luminances of the background and the fixed- and variable-intensity
elements were the same as in the gray background experiment in
Section 2.3.1 (page 11). (The patterns are shown on a dark gray
background to facilitate copying.)

I Figure 15 presents the mean segregation ratings for the 1:1

area-ratio (top panel) and the 4:1 area-ratio (bottom panel).I
I
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Edge alignment failed to affect perceived segregation. The curves
for the square, circle and blob elements are highly similar. The
area x contrast tradeoff indicates that it is differences in the
outputs of spatial-frequencies approximating the fundamental period
of the pattern and not differences in the higher spatial-
frequencies that are important for perceived segregation.

In the second experiment, the perceived segregation of aligned
and non-aligned squares were compared. The textures were composed
of squares 16 pixels on a side. Figure 16 shows examples of the
aligned (top panel) and the non-aligned arrangements (bottom
panel). The patterns were composed of one-element-only,
opposite-sign-of-contrast, and same-sign-of-contrast elements. The
elements composing the patterns, the luminance conditions, and the
form in which the data are plotted is explained in Section 2.5
(page 21). Figures 17 and 18 present the results. No significant
differences in perceived segregation occurred as a function of the
alignment of the squares. If segregation occurred due to the
contour interactions in the BC system, as suggested by Grossbergand Mingolla, perceived segregation should have been significantlyreduced in the pattern composed of the non-aligned squares.

2.4 Patterns with no energy at the fundamental: results and
predictions of simple model

In this experiment, the patterns contained elements that were
either uniform squares (14 x 14 pixels) or were center-surround
elements composed of a center square (10 by 10, pixels) surrounded
by a square frame 2 pixels wide so that total dimensions of the
element were 14 by 14. The center-to-center separation of the
texture elements was 26 pixels. The contrasts of the centers and
annuli of the center-surround elements were always equal but of
opposite sign so that the average luminance of the center-surround
element was the same as the background.

Some patterns-- called "opposite-sign-of-contrast patterns"
below--were constructed so that the centers of the two types of
texture elements were of opposite sign-of-contrast. In the case
of center-surround elements (Figure 19 top) one element consisted
of a higher intensity center and a lower intensity annulus; the
other element of a lower intensity center and a higher intensity
annulus. In the case of solid squares, one element consisted of
squares brighter than the background and one of squares darker than
the background. Other patterns--called "one-element-only patterns"
below--contained only one kind of element (as shown in Figure 19
bottom). In this case that type could either have the center
(which in the case of uniform squares implies the whole square)
brighter than the background or dimmer than the background. We
also used various unbalanced combinations which will not be
discussed further although they might prove useful in testing our
complex model. The background was set at 16.1 ft.-L.I
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Some of the results are shown in Figure 20. The horizontal

axis for each panel shows the difference in luminance between the
center of an element (which in the case of the square was the whole
square) and the background. For opposite-sign-of-contrast patterns
using center-surround elements, segregation was poor, regardless
of the level of contrast (Figure 20 upper left). When the elements
were uniform squares of opposite sign of contrast (Figure 20 upper
right), on the other hand, segregation was good (as previously
reported by Beck, Sutter, & Ivry, 1987). For one-element-only
patterns, perceived segregation was very good both for
center-surround elements (Figure 20 lower left) and for solid

* squares (Figure 20 lower right).

These results are not in accord with the predictions of the
simple model in several ways. The most dramatic is that, since
the center-surround elements average out to the background
luminance, no stimulus information is available at the fundamental
frequency of the pattern. Thus, according to the simple model, no
patterns based on center-surround elements should segregate well.
However, the one-element-only patterns do. This shows that
perceived segregation can occur based on information contained only3 in the higher harmonics of the texture pattern.

2.5 Patterns with same- and opposite-sign-of-contrast: results
and predictions of simple model

An intriguing result that does not fit the framework of
low-level channels without separate consideration of "on" and "off"
responses is that patterns with squares of opposite-sign
-of-contrast yield such good texture segregation compared to same-
sign-of-contrast patterns (Beck, Sutter, & Ivry, 1987). One
possibility is that sign of contrast is a feature, i.e. positive
and negative contrasts are encoded in different feature maps.
Perceived segregation of opposite-sign-of-contrast patterns should
then be similar to one-element-only patterns. An experiment
investigated whether the strong texture segregation that occurs
when the squares are of opposite contrast-sign involve different
mechanisms from those when the squares are same sign-of-contrast.

One-ElementOny, Opposite-sign-of-Contras, and Same-sign-of-Contrast Solid
Elemeni--Figure 21 shows portions from the luminance profiles of
each of five different patterns. Each profile shows one of each
of the two kinds of elements composing the texture. In all of
these patterns both kinds of elements are squares of the same size.
Also the background luminance is the same in all cases (16.1 ft.-
L.). The element luminance changes from pattern to pattern but
with the following important constraint: the difference between
the luminances of the two squares is the same in all cases. Hence
we will call the stimuli in Figure 21 a "constant-L1 -minimum-L2" or
"constant-difference" series of stimuli.I
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In this experiment, we used 66 stimuli of the five types
shown in Figure 21. The luminance difference between the squares
could be 0.0, .75, 1.50, 2.25, 3.00, and 3.75 ft.-L. Figure 22
plots the mean ratings (except stimuli for which the difference
was zero, all of which led to very low ratings between 0 and .16).
The vertical axis shows the mean segregation ratings. Each curve
connects the results for a constant-difference series of stimuli.
The horizontal axis is simply a convenient monotonic transformation
of contrast ratio into a quantity we called the
contrast-ratio-angle. (The contrast-ratio angle is equal to 135
degrees minus arctan of contrast ratio.) A contrast-ratio angle
of zero represents squares of opposite contrast-sign with the
luminances of the two squares equally above and below the
background. Points plotted between 0 and +45 degrees represent
stimuli of opposite sign-of-contrast in which the contrast of the
square above the background is increasingly greater than the
contrast of the square below the background. At +45 degrees the
luminance of the square below the background is equal to the
background and a pattern was composed of a single square above the
background. Points plotted between 45 and 90 degrees represent
stimuli in which the luminances of both squares are above the
background. As one moves towards 90 degrees the ratio of the
contrasts of the two squares approach 1.0. At 90 degrees the
contrasts of the two squares are equal.

3 Figure 22 shows that textures consisting of a single square
segregated most strongly, followed by textures composed of elements
of opposite-sign-of-contrast (thereby replicating the results in
the right panels of Figure 20). Textures composed of elements of
the same-sign-of-contrast segregated least. Figure 22 shows that
the textures with a single square, squares of
opposite-sign-of-contrast, and the squares of the
same-sign-of-contrast all lie on a continuum. A small change in
the stimulus produces a small change in perceived texture
segregation. The continuity of the functions is consistent with
the hypothesis that texture segregation is a function of the
outputs of spatial-frequency channels rather than separate on and
off mechanisms. Texture composed of single types of elements and
of elements of opposite, contrast-sign are not categorically
different from textures composed of elements with the same
contrast-sign. However, an examination of the output of the
spatial-frequency channels shows that they cannot explain the data
completely. Figure 23 (in the same form as Figure 22) shows the
predictions of the simple model. As can be seen all stimuli in
a constant-difference series are predicted to segregate to
approximately the same extent. This occurs because the outputs of
the most active channels (those tuned to frequencies near the
fundamental) are the same to all stimuli in such a series. For
these channels, the background falls equally on the inhibitory and
excitatory portions of the receptive field so it is only the
squares themselves that count. When the difference between the
luminances of the squares is held constant, the modulated activity
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in the output of the channel is constant. The outputs of other
channels are different for different members of the series, but
these channels contribute very little to the predictions of the
simple model. Thus, the greater perceived segregation of the one-
element-only patterns than of the opposite-sign-of-contrast
patterns and of the opposite-sign-of-contrast patterns than of the
same-sign-of-contrast patterns is not consistent with the simple
model.Another discrepancy between predictions and results occurs
for same-sign-of-contrast patterns (toward the left and right
edges of Figures 23 and 22). Two patterns having the same
contrast-ratio (L2-L0)/(L-L) but different luminance differences
L2-L are not predicted to segregate to the same extent; that is,
the curves in Figure 23 are vertically displaced at the left and
right edges as well as in the middle. But two such patterns did
tend to segregate to the same extent in the experimental results-
-that is, the different curves in Figure 22 converge at the left
and right edges of the figure so that for large luminance
differences, the size of the luminance difference (which curve the
pattern's point is on) ceases to affect perceived segregation; only
contrast-ratio (the point's horizontal coordinate) does.

The two discrepancies just mentioned suggest two different
modifications of the simple model may be necessary. As described
earlier, the one-element-only advantage suggests using the
information in the higher-harmonic channels. The second
discrepancy suggests instead a modification of the assumption that
each filter's output (and hence the simple-model's predicted value)
is linear with luminance. Standard results on "light adaptation"
make it clear, of course, that such modification is absolutely
necessary in any complete model of the visual system. It is only
in the case of patterns in which the range of luminances and
contrasts is small enough that one can hope for linearity.

i 2 .6 Complex spatial-frequency channels model

Two aspects of the results reported in Section 2.3 are
different from those predicted by a simple spatial-frequency
channels model, i.e., a linear pooling of within-filter differences
weighted by the contrast sensitivity function (page 9). First, the
fact that the minima in the functions in Figures 9, 10 (top panel),
11 (bottom panel), and 12 (right panel) is not the same for all
area-ratios but varies with the size difference between the large
and small squares making up a pattern. The minimum is less as the
size difference between the large and small squares is larger. If
areal contrast were the only factor affecting segregation, the
segregation ratings should have been the same when the area x
contrast between the large and small squares composing a patternwere equated. Second, the fact that the curves in Figure 12 (rightpanel) cross. Figure 13 shows that the functions predicted by the
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simple model do not cross.

I Further experiments with textures containing balanced
elements with no energy at the fundamental frequency (Section 2.4)
and with textures containing elements of opposite-sign-of-contrast
(Section 2.5) also gave results which are not consistent with the
simple model we proposed. These discrepancies suggest that the
simple model does not make sufficient use of information in the
channels sensitive to the higher-harmonics of the pattern. One way
in which the information in the higher-harmonic channels may be
used involves a more complicated spatial-frequency-channels model.
This model is illustrated in Figure 24. Each channel in this model
contains three stages: linear-filtering followed by a non-linear
function such as a rectification, followed by a second linear
filter. The filters in both stages are selective for
spatial-frequency and orientation. A large number of such channels
tuned to various spatial frequencies and orientations are assumed
to exist. We call these channels "complex channels" to distinguish
them from the simple channels of the earlier model, and because
this kind of channel is similar to current models of complex cells,
(e.g. Hochstein and Spitzer, 1985; and Hochstein, 1985a, b).
Measures of pooled second-stage filter activity (analogous to thatin the simple model) are taken to be the predictor of perceived
texture segregation.

Linear filtering followed by a rectifying nonlinearity has
been proposed by Grossberg & Mingolla (1985), Chubb & Sperling
(1988), and Bergen & Adelson (1988). Grossberg and Mingolla (1985)
have proposed a model containing the three stages of the
complex-model plus additional processes, and have suggested that
their model accounts for perceived segregation in patterns such as
ours. Their demonstrations, however, involve only filterings
sensitive to the higher harmonics of the pattern (small receptive
fields relative to the pattern periodicity). On the basis of the
findings reported in Section 2.3.5 (page 18), we believe that it
is unlikely that higher harmonic information is the major
determinant of perceived segregation. The trade-off between area
and contrast also suggests that the low frequencies matching theperiod of the pattern are important in texture segregation.

The complex channel model and the effects of light adaptation
appear able to account qualitatively for all our discrepancies.
Specifically, let's examine in some detail how the complex channel
model explains the finding that the greater the size difference
between squares, the greater the minimal segregation rating.
Consider a complex channel in which the first filtering is
sensitive to a very high spatial frequency while the second
filtering (after the nonlinearity) is sensitive to a spatial
frequency near the fundamental of the pattern. Such a complex
channel can respond to what might be called "low-spatial-frequency
patterns of high-spatial-frequency elements". For our example,

* we will consider the channel where both stages are sensitive to
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vertical orientations. The first high-frequency filtering
extracts the edges of the squares as illustrated by the narrow dark
and light bands in the right panels of Figures 3 and 4. The
nonlinearity then changes below-zero first-stage outputs (dark
bands in Figures 3 and 4) either to zero outputs (if half-wave
rectification or something similar is assumed) or to above-zero
outputs (if full-wave rectification or something similar is
assumed). Since the large squares have longer edges than do the
small squares, the second-stage filter (which is sensitive to the
fundamental of the pattern and to vertical orientations) will have
greater outputs where there are columns of large squares than where
there are columns of small squares, when the contrasts of the
squares is equal. Remember that the area of squares increases
quadratically with edge length. Therefore, at the contrast ratios
where area x contrast of the large and small squares are equated,
the edge-length x contrast of the small square will actually be
greater than that of the large square. The amount by which it is
greater will be larger for 16 and 8 pixel squares, for example,
than for the 16 and 12 pixel squares. In general, when both edge
lengths and areas count, as in the complex channels model, the
edges should attenuate the dip in the u-shaped function more for
larger size discrepancies between squares (as long as lower
sensitivity to smaller size does not cancel out the greater sizedifference).

A consequence of our hypothesis is that if lines (rectangles)
are the texture elements (a rectangle's area increases linearly
with edge-length), the minimum texture segregation should be the
same for different area-ratios of the rectangles. When the area
x contrast of the large and small rectangles are equated (and the
first-stage filterings sensitive to the fundamental show little
modulated activity), the edge-length x contrast is also equated so
the complex channel also shows little modulated activity. Figure
10 compares the texture segregation of patterns composed of 4 area-
ratios of squares (top panel) and lines (bottom panel). For
textures composed of squares, the greater the size difference
between the squares the shallower the trough, i.e., the minimum
segregation was greater. For textures composed of lines, the size
difference of the lines did not yield different minimum segregation
ratings.

The cross-over of the functions for different fundamental
frequencies in Figure 12 (right panel) may also be explained by
the complex channels model. Consider the 1 c/dog and 4 c/deg
fundamental frequencies. Because the higher harmonics of the 4
c/deg patterns fall in a range of low contrast sensitivity, the
perceived segregation of these patterns is primarily determined by
initial filtering at the fundamental frequency. Thus, when the
area x contrast of the large and small squares is equated, the
rated segregation in Figure 12 (right panel) is close to zero. For
the 1 c/deg patterns, however, the higher harmonics are in a more
sensitive range of the contrast sensitivity function and can

I



m 24

contribute to perceived segregation. According to the
complex-channels model, the influence of the squares' edges (picked
up by the initial filtering at the higher-harmonic frequencies
followed by rectification and refiltering at the fundamental
frequency) will attenuate the dip in the u-shaped function. As one
moves away from the point of equal areal contrasts, the differences
in the outputs of the initial filtering increase more rapidly for
the patterns having a fundamental of 4 c/deg than of 1 c/deg
because 4 c/deg is closer to the optimum of the contrast
sensitivity function. Thus the curves should cross.

It is interesting to note that a condition where the area-
ratio of large and small squares was 4:1 while the sizes of the
squares varied appears both in the density experiment (Figure 11
bottom panel) and the scaling experiment (Figure 12 right panel).
In the density experiment, however, the period of the pattern was
kept constant while in the scaling experiment, the period
increased proportionately to the sizes of the squares. In both
cases, the minimum ratings increased as the sizes of the squares
(and thus the difference between the sizes) increased. However,
the cross-overs occurred only when the fundamental frequency
changed. This suggests that it is the changing contribution of
edges due to their weighting by contrast sensitivity, rather than
the smaller size differences between the squares that produces the
cross-overs in Figure 15 (right panel).

2.7 Comparison of perceived segregation and perceived lightness

A striking finding reported by Beck, Sutter, & Ivry (1987)
suggested that squares of equal size differing clearly in lightness
failed to yield good perceived segregation. The observations of
the experimenters further suggested that equal lightness
differences yielded very different degrees of segregation depending
on the background luminance. When the background luminance is
above that of the objects, lightness is agreed to be a logarithmic
function of reflectance or relative luminance to a first
approximation, i.e., the ratio of the luminance of the square to
the luminance of the background or to the average luminance (Judd
& Wyszecki, 1963; Helson, 1964). Figure 25 'from Beck, Sutter, and
Ivry, 1987) gives mean perceived segregation ratings as a function
of the ratio of the luminances of the two squares (top panel) and
as a function of the ratio of the contrasts of the two squares
(bottom panel). [For this figure, contrast was actually computed
as the difference between the square luminance and the mean
luminance of the whole pattern divided by the mean luminance--that
is, an extension of the quantity called Rayleigh contrast by
Shapley and Enroth-Cugel (1985) for periodic patterns.] Different
curves represent different ratios of the background to the higher
of the two square luminances. The different curves coincide when
plotted against contrast ratio (bottom panel) but not when plotted
against luminance ratio (top panel). Since it is luminance ratio
that is thought to determine lightness, this suggests that the
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strength of perceived texture segregation is not determined by the
magnitude of the lightness difference between squares.

Lighmess Matches-- Two experiments were conducted in which
subjects both rated the perceived texture segregation of a pattern
and also matched the lightnesses of each of the two kinds of
squares composing a pattern to chips of varying Munsell lightness
values (Beck, Sutter & Graham, 1988). In the first experiment, the
background was the same for all the patterns (30 ft.-L.), and the
squares were always darker than the background. Figure 26 shows
the segregation ratings plotted against the difference between the
lightness-match values for the two squares in the pattern.
Clearly, equal lightness difference lead to different segregation
judgement depending on the ratio of the background luminance to the
higher square luminance.

Figure 27 shows the rated segregations (top row) and the
differences between the lightness matches (bottom row) plotted as
a function of the ratio of the luminances of the two squares (left
column) and of the ratio of the Weber contrasts of the two squares
(right column). Different curves in the upper left and lower right
show results for different rations of background luminance to the
higher square luminance. In the upper right and lower left panels
the results all fell on thie same function (within experimental
error) and so are not distinguished. In short, perceived texture
segregation appears to be a single-valued function of the ratio
of the contrasts of the two squares while the difference between
the lightness matches appears to be a single-valued function of the
ratio of the luminances of the two squares.

In a second experiment, three backgrounds were used: a black
background (.99 ft.-L.), a gray background (16.1 ft.-L.), and a
white background (40 ft.-L.). The squares were always above the
black background, above and below the gray background (opposite-
sign-of-contrast, and below the white background. The results were
similar to the first experiment. The functions describing the
lightnesses of the squares differed from the functions describing
the texture segregation of the patterns. Perceived texture
segregation tended to be a monotonic function of the contrast ratio
of the squares. With the gray background (opposite-sign-of-
contrast squares whose contrast ratio was always 1), perceived
segregation decreased when the luminances of the squares were close
to the background. The perceived lightness of the squares was a
monotonic function of the ratio of the luminances of the squares.

N Is perceived lightness computed independently of and/or at
a later stage from the stage controlling perceived texture? In
some sense, the answer seems likely to be yes. For lightness is
clearly seen as a property clearly-perceived squares and each
square is seen as of uniform lightness. Yet in our models ofI
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perceived texture segregation, low-level channels are primarily
responsible for perceived texture segregation and these channels
do not have the right properties to signal the presence of
homogeneously-illuminate "squares"in the pattern. On the other
hand the fact that both perceived texture segregation and perceived
lightness are functions of related stimulus properties (at least
through some range of conditions) suggests a closer relationship
of some sort. The similarity of the contrast computations to the
weighting functions of the receptive fields suggests that they are
computed first and that the luminance ratio determining perceived
lightness is computed from them. Neurally, the contrast
computations can be interpreted as comparing the excitation
produced by a patch with a base firing rate. For a square on a
larger background,one can assume that the base rate is set
primarily by the background. The contrast calculation computes how
much the firing rate due to the luminance of a square deviates from
the base rate set by the luminance of the background. It is the
relevant computation for determining the perceived strength of
texture segregation. Perceived lightness is determined to a first
approximation by the ratio of the luminance of a square to the
luminance of the background. It is based on what proportion of the
base rate set by the luminance of the background is the firing rate
of an object. This can be computed by adding 1 to the contrast
computation. (The value of 1 represents neurally the firing rate
of the background expressed in terms of the background firing rate
as the unit of measurement.) Thus, the luminance ratio determining
perceived lightness can be computed neurally from the firing rate
signaling the luminance difference between a square and the
background by adding the firing rate of the background and
comparing it to the background firing rate. This calculation
assumes that there are cells in the visual system that are not zero
balanced, i.e., the excitatory and inhibitory responses do not
cancel each other. In a uniform field, a Ganzfeld, such cells
respond with a maintained discharge.

We recognize that our conjecture is highly speculative.
However, we find it suggestive and hope that by pursing it we will
better come to understand how perceived lightness is related to the3 outputs of spatial-frequency channels.

2.8 Global popout

3 We have been examining the global popout of lines and curves.
By global popout, we mean the rapid, preattentive perception of a
global configuration such as the dotted line in Figure 28.
Treisman & Gormican (1988) have done pioneering work in popout but
she has concentrated on looking for a single target amidst many
distractors. She has shown that a single feature can be detected
preattentively and in parallel while a combination of features
requires serial search and focussed attention.

I
I



I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

FIGURE 28

I



I 27

2. 8.1 Comparison of texture segregation and the popout of lines

Beck, Rosenfeld, Ivry, & Navab (1988) have studied the
factors affecting the rapid detection of a line composed of
disconnected shapes embedded in a background of the same shapes.
Figure 28, shows a dotted line embedded in a background of dots.
The line is seen immediately and effortlessly. It is possible that
the spatial frequency mechanism involved in the discrimination of
texture regions also detect the line. For example, differences in
the outputs of filters in the line region and in neighboring
regions above and below the line may control the rapidness of line
detection.

This kind of computation does not appear able to account for
the detection of the lines. We have examined whether the filtered
output in a 10 pixel strip about the line differs from the
filtered output in the background (40 pixel strips above and below
the line region) for the data reported by Smits, Vos and Oeffelen
(1985). Figure 29 shows the strip about the line and the top andbottom background strips superimposed over a filtering of the
pattern. There was no significant correlation between differences
in either the means, standard deviations, or maximum outputs of
the filters in the line and in the background strips, and the
rapidity with which a line was detected. The maximum Spearman
rank correlation was .21 when we summed the differences across all
filters and .30 for individual filters.

2.8.2 Popout expedments

Why do spatial frequency channels predict texture segregation
but fail to predict line detection? Before turning to this
question I want to report three studies that we have conducted.

In one experiment, we investigated how the alignment and
misalignment of edges affected line detection Four sizes of squares
were investigated. The stimuli were scalings of one another.

Square size, the spacing between the squares in the line, and the
lateral displacement of the misaligned squares were increased
proportionally. Figure 30 shows examples of stimuli with aligned
and misaligned squares. Stimuli were flashed for 150 msec and
subjects were required to judge whether the line was vertical or
horizontal. We recorded both reaction time and errors. The two
measures agreed closely and we shall report only reaction times.

The X axis in Figure 31 plots the square sizes in pixels and
the Y axis the mean reaction times. There is a striking difference
between the collinear and misaligned squares. For the misaligned
squares, reaction times remained constant with increasing square
size and scaling of the stimuli. If the visual system is detecting
the density of squares in a particular direction, reaction time
would be expected to remain constant since density remains constantI
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if size and spacing is increased proportionally. For the aligned
squares, the reaction times decreased with increasing square size
and scaling of the stimuli. Increased edge alignment facilitated
detecting the line.

I Two further experiments demonstrate the importance of edge
alignment. The stimuli were composed of 8 and 16 pixels on a side
and were scalings of one another. Figure 32 shows the reaction
times. As in the previous experiment, the larger squares were
detected more rapidly and than the smaller squares. This occurred
at all luminance levels even when the areal contrast (area x
contrast) of the smaller square was much greater than the arealI contrast of the larger square. The length of the squares was more
important than the areal contrast of the squares for detecting the
line. A third experiment compared solid squares with outline
squares. The squares were 10 and 20 pixels on a side and were
scalings on one another. Figure 33 shows that the outline squares
were detected as rapidly as the solid squares. Filtering the
displays showed that the difference between the filtered output ofthe line region and the outputs of the background region was forthe outline squares 60 percent of that of the solid squares.

I 2. 8. 3 Difference between texure segregation and line detection

What is the difference between the texture patterns and the
line displays? For preattentive pattern vision such as immediate
effortless texture segregation and line detection, we believe
perception is a direct function of lower-level analyzers. We
propose that preattentive pattern vision is a function of the
information from 3 types of analyzers: bar detectors, spot
detectors, and edge detectors. The large bar detectors provide
information about the overall changes in luminance. The spot
detectors and the small bar detectors give information for the size
and orientation of the elements of a pattern. The edge detectors
give information for the arrangement of the edges in a pattern.IThe spot and edge detectors provide no information for
segregating the texture regions in Figure 1. The spot detectors
tell us that there are two populations--large and small squares.
There is ,however, no spatial differentiation as a result of their
outputs. The centroids of the populations of large and small
squares are the same. There is also no information from the edge
detectors. Though there is more alignment of the squares in the
top region than in the center region, there is a strong alignment
signal coming from both regions. The only spatial differentiation
is from the large bar detectors which signal differences in the
overall pattern of luminance changes in the top and center regions.
In the top region the changes of overall luminance occur in the
direction of the X axis and in the center region in a direction 45
degrees to the X axis. The large bar detectors are not sensitive
to edge alignment and we have found that, unlike the line displays,
perceived segregation in our texture displays is not affected byI
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either the absence of aligned edges or the misalignment of edges.

I The long line in the line displays consists of elements having
the same size, contrast, and orientation as the background
elements. Line detection can not be explained in terms of
differences in the response of large spot or bar detectors. The
line does not occupy a separate region of the display. As
illustrated in Figure 34, the bar detectors become wider as they
become longer and a detector long enough to fall on 3 dots of the
line (upper right image) will also fall on many background dots.
The small bar detectors spot detectors, and edge detectors give
similar responses to elements in the line and in the background.
What is suggested is that line detection is not the result of
differences in the outputs of large spot or bar detectors

(detectors falling on 3 or more elements of the line) but results
from local operations on the outputs of small detectors. The
relevant properties of the outputs of spot detectors are color,
contrast, size and possibly sign of contrast. The outputs of bar
detectors have in addition the properties of orientation and
elongatedness. The outputs of edge mechanisms are oriented edge
segments. The local operations that detect a line may be of
various kinds. There may be a linking of similar outputs. Aligned
horizontal squares may link to form a long line. The length of the
long line is an emergent feature that makes it stand out from the
surrounding region. Local operations may also direct a fast search
process. Search is focused by straight edges. Short edges,
however, do not focus search as well as long edges. For misaligned
elements a sharp focus does not help. Rapid line detection occurs
because search is focussed by local operators that compute a
greater element density in a given direction.

i We are investigating these possibilities.
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I ABSTRACT

We have conducted research into the perception of texture, concentrating on the earliest levels in the

extraction of geometric structure. The work has involved a computational and psychophysical study of the

role of retinal and cortical spatial frequency filters in the extraction of contour information. The specific

areas reported concern: i) the differential roles of radially-symmetric and elongated receptive fields on the3 Cafr wall illusion, a pattern that is useful for the induction of illusory brightness bands and orientation, ii)

a strategy for parsing of band-pass filtered images to differentiate line-like versus edge-like luminance

changes, iii) asserting orientation between discrete items, and iv) connecting contour fragments across

luminance gaps. Across these areas one common theme is the importance of spatial gating nonlinearity.
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* 1. INTRODUCTION

* 1.1 The Problem Areas

The overall goal of our research is to understand the visual representations and processes involved in texture

perception. Towards that end we have recently investigated some early aspects of contour and form

perception. We first sketch the path of investigation that has lead us to these areas. Earlier we examined

problems of bootstrapping, i.e. of initiating the extraction of texture descriptions (Stevens & Brookes

1987). The bootstrapping study was a direct extension of (Stevens 1978) where parallelism, a primitive

geometric property of texture, was examined in terms of dot patterns. We pursued the basic question of

whether orientation (defined e.g. by a pair of adjacent dots) is extracted by "symbolic" virtual lines or more3 directly measured by elongated receptive fields that summate luminance energy. As recognized by the

Gestalt investigators and later formulated computationally (Marr 1976, 1982), at some point perceptual3 grouping constitutes associations (such as pairings) between perceptual wholes. For example, virtual lines

might represent pairwise groupings between similar place tokens. It would be significant to show that such

grouping processes occur at an early stage of texture processing. Evidence was presented that supports the

virtual line hypothesis (discussed in detail later). In part the argument hinged on a broad assumption about

the linearity with which luminance signals are spatially summated, which on close examination led to our

returning to question the symbolic grouping hypothesis for early texture processing. As we report in

section 2.3, while some grouping phenomena (such as a preference for color and contrast similarity) still

suggest symbolic pairings, receptive field mechanisms are strongly implicated as the underlying orientation

detection mechanism. At about that time we also were pursuing the role of the concave cusp in

determining local geometric evidence for form boundaries (Stevens & Brookes 1988; reported first in the

previous final report). As part of the extension of that work, we sought to examine their occurrence in

natural images, which entailed implementing an edge detection operator that differentiated edge- from line-

like luminance changes. Consideration of extensions of Watt and Morgan's (1985) one-dimensional theory

to two-dimensional images led to work reported in section 2.1. Experience with actual images led to

developing a parsing operator that incorporated strong nonlinearities. This behavior was then recognized to

have a possible counterpart in the nonlinearity exhibited by cortical cells, for which we suggest a functional

3 purpose. Both themes, the distinction of luminance changes of different type and the use of spatial

nonlinearity were also pursued in a study of the familiar Caf6 wall illusion (section 2.2). The final topic

we review is the characterization of form extraction as the compilation of local contour evidence. This

work, which is in an early stage, is also found to implicate receptive fields (section 2.4).

I
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I 1.2 Summary of Current Working Hypotheses

The work we report is performed within a larger view towards texture and form perception, which is

outlined in the following discussion.

Form Perception as Construction: A visual form is a perceptually coherent whole that is distinguished as

figure against its immediate background. A major aspect of the extraction of visual form involves
localizing and organizing its outline or silhouette contours. It is well accepted that the extraction of visual

form begins with the detection of local edge or contour information along the boundary, and concludes with

the construction of a distinct perceptual entity. The Gestalt investigators made a series of fundamental

observations that together establish the essentially constructive aspect of form perception: forming3 associations among the component parts of a visual form. The associations or groupings seemingly involve

some type of conjoining primitives (sometimes referred to as a perceptual glue l ) and rules for how

perceptual parts can be conjoined, and at least some general rules for the application of these rules

(instructions for assembly).

I Preattentive versus Attentive Processing: The construction of a form is achieved substantially in parallel

and preattentively. To determine the correct closure or connectivity (e.g., across substantial gaps or contrast

reversals) is an intrinsically difficult computation and probably requires sequential processing, and hence

focal attention. Natural vision requires assembling a form with little prior knowledge of what that form3might correspond to physically, hence much of the initial aspects of the assembly process must be achieved

in a bottom-up manner. One aspect of form perception that we find particularly challenging is how the

3 process is initiated.

We suspect that many researchers have underestimated considerably the combinatorics of possible

forms posed by a natural image. An image presents a very large number of different forms that might be

constructed purely on the basis of an a priori reasonable scheme of rules for generating wholes from local

collections of fragments. We believe that actually very little form perception is performed beyond a very

modest initial stage of organization, and that the complexity of theoretically-possible forms that might be

extracted from an image poses an intrinsically insurmountable complexity barrier, one that tacitly defines

the distinction between preattentive and attentive, or scrutinous, vision. That is, the visual system uses

attentive processing (e.g. intrinsically-sequential computations) for form detection problems that cannot be

1 Some researchers, notably Treisman and Julesz, propose that this glue requires attentive processing. We
suggest that the attentive aspects they address experimentaly concern search and discrimination processsing
that is more difficult and performed later than the early aspects of form perception we address here.sugs!htteatnieapcste drs xeietlycnensac n iannco rcssn

I
Imm II



5

I solved preattentively. Not all of form perception, however, requires focal attention: isolated, closed forms

can be extracted immediately and preattentively.

The interplay between psychophvsics and computational models: The specific problems we address concern

the earliest precursors of visual form, and include the binding together, or conjoining, of contiguous (or

nearly contiguous) contour fragments, selecting particular structures of contours as figure versus ground,

3 and the subsequent perception of figural properties such as location and overall orientation. Each of these

problems can be treated at various levels of specificity: from the understanding the basic visual strategies to

providing progressively detailed proposals regarding the underlying neural mechanisms. Most frequently,

we find ourselves using visual phenomena to infer basic computational issues, such as how orientation is

imposed on discrete visual items, or how observers preattentively decide which side of a contour is the more

3 likely associated with figure versus ground. What has been more difficult, but is becoming increasingly

tractable, is the mapping between strategies and implementations, i.e. demonstrating the involvement of

3 specific neural processes. These notions are sketched in the following, and pursued in more detail in

subsequent sections.

I Observable Behavior and Neurophysiology: Understanding the internal representation of a perceptual

grouping, even that corresponding to the simple perceived grouping of two adjacent dots into an apparent

pairing, is in fact an extraordinarily challenging research issue. What internal quantities might we assume

underlie the dot pairing? First, and most uncontroversially, the dot pair has an apparent orientation

corresponding to that of the line segment connecting the two dots. The orientation of the dot pair, as we

will return to discuss in detail, is likely measured by orientation-selective receptive fields (RF's). While

3 that is probably unsurprising, it has proven quite difficult to attribute other aspects of perceptual grouping

behavior, such as similarity preferences, to local receptive fields. Although it is feasible to conclude that

orientation is measured by a specific receptive field mechanism, it is quite another matter to understand how

those measurements are selected and used to extract a visual appreciation for the structure implicit in the

pattern. There are as yet hard limits on the feasibility of relating perceptual grouping behavior to

underlying neural mechanisms. Nonetheless, the known neurophysiology can be used to constrain our

computational proposals, as discussed below.

Discrete (and Symbolic) versus Continuous (and Analogical) Processing: How might the visual system

3 achieve the effect of perceptual grouping? The association of fragments into a perceptual whole does not

necessarily requir discrete representations for the individual fragments and a subsequent discrete act of

generating a symbolic grouping assertion. There has been persistent difficulty in deciding upon a formal

way of describing perceptual groupings, i.e. to have a description that captures the salient aspects of seeing

discrete items as associated perceptually, and yet is biologically implementable. Mathematically, a

I



1 6

I grouping among n items might be characterized formally by an n-ary relation and represented by an n-tuple

whose referents are pointers to the representations of the constituent fragments. But how this abstraction is

implemented neurally remains obscure. Nonetheless, the visual system shows ample evidence of being able

to operate selectively on subpopulations of visual items, pulling out of a complex display the structures

that cary biologically meaningful organization. One is then aware of the discrete items that comprise the

apparent pattern and organization. The perceptual groupings are likely achieved by neural mechanisms that

individually (in single-cell recordings) exhibit graded and continuous behavior. How they affect such discrete

behavior in concert is still unknown.

I Nonlinearity and Visual Strategies: The extraction of a visual form requires discrimination of its boundary

from the background (and the interior details of the form) and assembly of the constituent parts into a3 whole. These operations are intrinsically nonlinear, of course, and presumably are implemented by gating

(or veto) and selection nonlinearity mechanisms. Shunting inhibition within a feedback network can

achieve such strongly nonlinear behavior, as well as more continuous forms of nonlinearity, e.g. in gain

control and signal-to-noise enhancement (McCulloch & Pitts 1943; Grossberg 1982). The nonlinearity in

form perception is usually associated with later stages, e.g. the bistability of figure-ground decisions.

Moran and Desimone (1985) have shown evidence of gating suppression in extrastriate cortex driven by

selective attention But the earliest stages of contrast processing in striate cortex are generally expected to

be approximately linear (Hubel & Wiesel 1962, 1968; Bishop, Coombs & Henry 1971; Bishop & Henry

1972). The major deviations from linearity is expected in length and width summation (Heggelund,

Krekling & Skottun 1983; Henry, Goodwin & Bishop 1978; Webster & DeValois 1985), presumably due

to a Gaussian-shaped weighting envelope, such as modelled by a Gabor filter (Daugman 1985) (see also

Movshon, Thompson & Tolhurst 1978 regarding superposition).

There is evidence for gating nonlinearity as early as simple cells. Hammond and MacKay (1981,

1983a) recently showed that length summation in simple cells is highly dependent on contrast. For stimuli

having constant contrast along their lengths, length summation was found to be substantially linear.

Additions of line gaps of reduced (background) contrast lowered the response of the cell by an amount

predictable by length summation considerations. However, reduction of contrast below background

(reversed contrast) produced an unpredictably large response decrement. The term "gating" inhibition was

given to this phenomenon to distinguish it from simple removal of excitatory drive, and appears to be a

3 property of complex cells as well (Hammond & MacKay 1983b, 1985).

There would be computational advantage to having an operator act as a linear device when

presented with appropriate stimuli, and be shunted when presented with a configuration for which the

measurement would be meaningless. We are examining the strategic utility of this principle in early

I
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I aspects of form perception. Selection, or enhancement, nonlinearity, on the other hand, is likely more

generally pervasive throughout early visual processing. At one extreme, selection might be involved in

contour detection as early as the LGN, and at the other, to underlie the local bistability of figure-ground

decisions. Grossberg and his colleagues have elucidated the computational principles of nonlinear systems

and shown their predictive value e.g. in boundary contour detection and brightness reconstruction (Grossberg

& Mingolla 1985). Specific instances of nonlinear behavior are extraordinarily difficult to describe,

however, because the observed nonlinearities reflect the purposes of the computation, -which must first be

understood prior to modelling the source of the nonlinearity. Our approach is to use psychophysics to

further reveal the fundamental strategies underlying geometric form perception, with the proviso that

understanding the implementation of these strategies is a secondary concern.
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i 2. RESEARCH RESULTS

* 2.1 Parsing Luminance Changes

Two prototypical luminance features are the step edge and bar (where a line is the limiting case of a bar of

zero width). An ideal bar in an image would correspond to pair of opposite-polarity edges in very close

proximity. Note that the defmition of a bar feature in the image presumes a given scale. As bar width

increases the component edges of the bar separate until for some arbitrary width dependent upon the design

of the visual system, the two edge events are no longer labelled as coupled, and the bar is no longer seen as

a unitary image event.

Psychophysically, certain perceptual phenomena such as the Chevreul illusion and the Mach band

exhibit a strong degree of scale sensitivity, which suggests that bar- and line-like luminance changes might

well be implemented by spatially organized receptive fields. (Kulikowski & King-Smith 1973 ; Shapley &

Tolhurst 1973; Daugman 1985). The neurophysiology supports the general distinction of bar versus edge

in terms of even- versus odd-symmetric simple cell receptive fields, respectively. The receptive field of

appropriate orientation measures the approximate tangent to the contour. Wilson (1986), for example,

using a family of orientation-tuned receptive fields of different sizes, has shown how a variety of curvature-

related tasks can be subserved by elongated receptive field (RF) organizations (see also Gelb &Wilson 1983

and critique in Morgan & Ward 1985).I
As contour curvature is further increased relative to the overall scale of the luminance change, the

prototypical description is a closed blob, a convex region that typically corresponds to a local maximum or

minimum in the luminance field. As the diameter of the feature is further reduced, the blob becomes point-

like. Unlike the apparent correspondence between elongated receptive fields for processing bars and edges, it

is not clear what the neural counterparts are for localizing and distinguishing blob-like luminance changes.
There are many non-orientation selective cells found in cortex, such as those in the so-called anatomical

blob regions, recently revealed by cytochrome oxidase (CO) labelling in VI (Wong-Riley 1978; Horton &

Hubel 1981; Livingstone & Hubel 1984; Hendrickson 1985; Hubel & Livingstone 1987). CO resides in

blob-like regions that are found in regular arrays throughout VI and is absent from intervening (interblob)

regions. The blobs lie in the center of ocular dominance columns, but unlike columns, are seen only in

laminae 11-Il and V-VI. Current speculation is that these structures are involved in color but not form

processing (Livingstone & Hubel 1987, Ts'o et al. 1986a).
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I As Koenderink (1984) observes, it is mathematically possible to describe an image purely in terms

of blobs of varying scales and shapes (see also Koenderink & van Doom 1987). This leads to an elegant,

unified treatment for describing images, but we are pursuing the conjecture that the visual system

specifically distinguishes within this general scheme a small set of scale-dependent image features. Features
I such as edges and bars would have associated attributes or properties such as location, blur, size. In

culminating a progression of studies on contour curvature, blur, and spatial primitives, Watt and Morgan

I (1985) presented a theory for distinguishing edge versus bar luminance waveforms that is more predictive of

human performance than earlier models based on zero-crossings (Marr & Hildreth 1980). Watt and

I Morgan's model, however, is difficult to implement for waveforms that have substantial sustained activity

(Stevens, in preparation). Their model incorporates an internal estimation of noise, which, when subtracted

from the waveform, is expected to produce regions of zero activity. The parsing of the waveform into edges

versus bars is then based on the arrangements of regions of activity bounded by regions of inactivity. Our

experience with natural images, however, revealed that regions of nonzero response are quite common.

I
I
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There is apparently no local means to estimate this local "noise" (the nonzero signal is not entirely noise,

but also a consequence of nonlinear shading gradients which introduce nonzero second partial derivatives

over extended regions). Our early implementations of the Watt and Morgan parsing strategy had only

limited success, because of the strict requirement for zero-bounded regions. We further recognized that the

biological signals providing the input to such parsing can be expected to have a substantial, and

unr.-edictable, sustained component that is roughly related to absolute luminance (Barlow & Levick 1969;

Marrocco 1972; Stone & Fukuda 1974). The introduction of sustained response into both the on- and off-

center channels poses a major difficulty to strategies that are expecting to bound regions of activity.

Stevens (in preparation) derived a new model for the component activity in the receptive fields that

effectively distinguish edge from bar, which does not require returns to zero activity. Specifically, the

strategy is to localize a region of relatively enhanced activity in the on-cells that is coincident with a

relatively depressed region of activity in off-cells. For a zero-balanced signal only the on- or the off- system

would be expected to be active. An ideal edge would correspond to a region of on-cell activity spatially

adjacent to a region of off-cell activity. The regions of activity would lie astride the zero-crossing that

marks the location of the ideal edge. See e.g. (Glunder 1986) for a suggested neural implementation of

Watt and Morgan's (1985) theory. But with sustained activity one can expect both the on and off systems

to have substantial activity. Hence we suggest measuring the relative proportion of activity across the two

systems at the same spatial location with the RF. That is, while the cross-section of an odd-symmetric

(edge) RF is traditionally modelled as adjacent on-center and off-center subfields. Our extension would

expect antagonistic input (inhibitory input of opposite-polarity) to each subfield. As a first Boolean

approximation to an implementation that would eventually use algebraic summation and veto nonlinearity),

an edge would be marked by a region of not merely on-activity, but ON-and-not-OFF activity (meaning

much more on-cell activity than off) spatially adjacent to a region of opposite polarity, namely OFF-and.

not-ON. This constitutes a superposition of mutual antagonism of the opposite sign channels to each

subfield of the overall RF. As will be developed further in later sections, this corresponds well to the

observed behavior in simple and complex cells found by Hammond and MacKay (1981, 1983a, 1983b,

1985).

Receptive fields incorporating spatial adjunctions of this type were implemented in a fast

algorithm using our AFOSR-funded digital convolver (32-pixel diameter kernel) on the Symbolics 3675

Lisp Machine. Using natural images, we examined the method's success in marking line and edge features

(see figures 1 thrugh 3). In this algorithmic study, various curious observations were made. First, the

scheme is remarkably resilient over spatial imbalance between the on and off system (as would arise in P-

cells). Second, it is sufficient to examine only the sign of the convolution values (using a "trinarizing"

method that differentiates positive, negative, and deadband zones of activity, where the deadband is typically

I



n 5-10%, i.e. on the order of the sensitivity expected of P-cells). Third, it is sufficient to use a small spatial

zone of coincidence for localizing edges and bars: the precise localization of central moments (as Watt and

Morgan, 1985, propose) is not particularly essential for the localization task. Fourth, we found that spatial

localization in two dimensions can be effectively finessed by INCLUSIVE-ORing the detection of an edge

or bar in four or so independent orientations. That is, we find that excellent bar and line positional marking

can be achieved by non-oriented receptive fields.I
I

I --.

I

Figure 2. The result of convolving the image in figure 1 with a DOG having ratio of excitatory and
inhibitory space constants of 1:5. Note that the profiles correspond to the locations used in figure 1. The
convolution profile represents several closely-spaced edge and line features.

U Another observation from the earlier implementation study is the dramatic reduction in complexity

of potential forms that results from making an early decomposition of the image into separate bar and edge

descriptions. Compared e.g. to the plethora of undifferentiated zero-crossing contours resulting from

I
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U convolution with a small DOG operator (few of which correspond to form boundaries), the edge segments

seen in the absence of the lines and bars make for a much more readily interpreted collection of forms.

We find it significant that while edge detection is generally expected to be accomplished by

elongated receptive fields, which incorporate orientation selectivity, it is possible in principle to dissociate

the problem of localizing an edge (or bar) from the problem of computing its orientation, blur, contrast, or

other attributes. We do not expect that the biological system follows this strict function division, i.e.

using separate mechanisms for edge localization than for measuring orientation, and so forth. Elongated

RFs are likely used for both measuring curvature and for spatial localization, as modeled recently (Wilson

U 1986; Dobbins, Zucker & Cynader 1987). But it is nonetheless noteworthy that two-dimensional detection

of edge or bar location can be finessed with radially-symmetric operators. The neurophysiological

prediction would be the detection of RFs that are sharply tuned to phase (e.g. even versus odd symmetry)

but independent of the orientation of the bar or edge.

I
I

I M -•

I

I

Figure 3. Demonstration of our line/edge parser, where edges and lines (thin bars) are emphasized. This
output was generated using one free parameter, namely a threshold representing contrast set -itivity of 5%.
The implementation uses a digital convolver for the DOC convolution.I
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U
2.2 The CafN Wall as Evidence for Parsing

The Caf6 Wall is composed of alternating black and white tiles separated by narrow horizontal mortar lines

of intermediate grey (figure 4). Two effects are associated with the pattern. The horizontal edges of the

individual tiles appear slightly tilted, causing them to appear wedge-shaped, and overall, one receives the

impression that the mortar lines are not parallel.

The Cafd Wall effect appears to involve several early aspects of edge detection: irradiance,

brightness induction, orientation detection, edge localization, and contour completion. These effects derive

from phenomena associated with the mortar, both within the mortar and at the borders between the mortar

and the tiles above and belo-Y. The horizontal white and black edges that border on the mortar line appear to

intrude diagonally into the mortar, producing a succession of wedge-shaped tiles. And within the mortar

itself, rather than a uniform grey one sees alternating light and dark diagonal bands, a so-called "twisted

cord" (Fraser 1908). The twisted cord has been shown to induce an illusion of overall tilt in this and other

patterns (Fraser 1908), presumably from interactions among orientation-tuned cortical units that construct

extended continuous contours (Moulden & Renshaw 1979; Grossberg & Mingolla 1985).

I
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m Figure 4. The Caf6 Wall pattern.
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Gregory and Heard (1979) propose that the intrusion of the tiles into the mortar is a consequence of

the failure of an hypothesized "border locking" process, whose purpose is to constrain the spread of

lightness to within regions bounded by contrast edges. They suggest that in those regions where tiles of

opposite contrast overlan vertically, the border-locking process does not localize the edge boundaries

correctly; lightness then migrates across the mortar to form the illusion. Gregory and Heard (1979) further

suggest a relationship between edge contour shifts and in-adiance, which Moulden and Renshaw (1979) also

show strongly contributes to the tilt distortion in the related Milnsterberg illusion. McCourt (1983) has

shown that brightness induction also contributes to the effect by inducing an alternating pattern of elongated

diagonal light and dark strands within the mortar.

Morgan and Moulden (1986) examined the spatial frequency content of twisted cords, by

convolving the Cafd Wall pattern with a Laplacian operator that resembles the center-surround operator

3 found in the retina (Rodieck & Stone 1965; Wilson & Bergen 1979; Mart & Hildreth 1980) They show

that Laplacian filtering retains, and even accentuates, the apparent twisted cords in the Cafd Wall and

Mtlnsterberg patterns. The extrema (ridges and troughs) in the Laplacian-convolved image correspond quite

directly to the light and dark strands of the apparent twisted cord. Foley and McCourt (1985) show that

such center-surround operators can induce opposite-phase brightness into narrow fields, as is the case for a

difference of Gaussians (DOG) operator of diameter somewhat larger than the mortar width. In addition to

attributing small-scale brightness induction effects to retinal DOGs, irradiance-type shifts in apparent edge3 location along the mortar (Moulden & Renshaw 1979; Gregory & Heard 1979) may also have a partly

retinal origin, e.g. by a compressive transform at luminance transduction (Morgan, Mather, Moulden &

Watt 1984; Mather & Morgan 1986). The tilt effect in the Cafd Wall seems therefore to originate in part as

perturbations or artifacts induced by the spatial filtering performed at the retina, and in part from cortical

processes that measure the orientation and position of these perturbed luminance changes.

In addition to the local origins of tilt in the pattern, there is need to explain the overall impression

of convergence along the alternating rows of tiles. As Fraser (1908) originally conjectured, the global

aspects of the illusion likely emerge from integrative interactions along the length of the mortar. Support

3 has been given for this conjecture, phrased in terms of facilitatory interactions among orientation-tuned

cortical units that construct itended continuous contours (Moulden & Renshaw 1979; Grossberg &

Mingolla 1985).

We examine here quantitatively the extent to which fine-scale Laplacian-like (DOG) filtering at the

retina induces the topographic features associated with the twisted cords. We find that the smallest proposed

DOG uperator makes satisfactory predictions regarding the presence and extinction of induction-like features

I
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I in the bandpass image, providing further support for the ideas described by Morgan and Moulden (1986).

We report a reversal of the traditional Cafd Wall effect that is dependent upon mortar width.I
We also examine the involvement of orientation-selective units (e.g. simple cells) in extraction of

the local tilt. Hammond and MacKay (1981, 1983a, 1983b, 1985) demonstrated a dramatically non-linear

property of striate cells: suppression when a bar is augmented with a small dot of opposite contrast. The

cell appears to be gated-off by the addition of the small dot of opposite contrast. We have found that by

inserting points of opposite contrast at strategic locations where even-symmetric receptive fields might be

expected to align locally with the ridges or troughs in the Cafd Wall pattern, there is a corresponding

disruption of the tilt illusion.

The Influence of Circular-Symmetric Operators

Morgan and Moulden (1986) observe that the light and dark bands within the twisted cord correspond to the

ridges and troughs (local extrema) in the Laplacian-convolved image. Using a zero-balanced difference of

Gaussians, with ratio of excitatory to inhibitory space constants of 1:5 (or larger), we examined the

behavior of the extrema in the convolution values as a function of the relative size of the operator and the

mortar width.

Gregory and Heard (1979) varied mortar width and found that the illusory tilt was maximal at the

smallest width they tested (1 ), and that it weakened with increasing mortar width, until little distortion was

observed for a 10 width2 . We find that this behavior is likewise reflected in the amplitude and shape of the

extrema in the DOG-convolved image as mortar width is increased. We assume that the smallest DOG

operator in the central fovea has a central excitatory diameter co of about 1.3' (Marr, Poggio & Hildreth

1980; Richter & Ullman 1982)3 . The quantitative behavior of a DOG operator of this size as a function

of mortar width suggests to us that this scale of operator governs both the appearance, and the gradual

disappearance, of the local tilt in the Cafd Wall patterns seen in sharp focus. When the mortar width is on

the order of (o, the extrema in the resulting convolution values resemble twisted cords, as Morgan and

Moulden (1986) report. The convolution values within the mortar are also modulated periodically, in

accordance with the brightness induction observed by McCourt (1983). Specifically, while the mortar is a

2 This result was obtained for patterns presented in sharp focus; the illusion can also be seen over a larger

range of scales when blurred optically or viewed somewhat peripherally (Moulden & Renshaw 1979; Gregory
& Heard 1979).

3 Mart et al. (1980) include the optical point spread function in the effective diameter of this operator. This
proposed operator size would represent the smallest expected diameter of DOG operator, as based on the
density and diameter of cones in the central fovea, and presumes that the excitatory input derives from a
single cone (Richter & Ullman 1982).

I
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i uniform neutral grey, the contrast within the convolved mortar alternates in reverse phase relative to the

contrast of the bordering tiles: where bounded above and below by white tiles the convolved mortar is

darker, and vice versa (see figure 4a). For mortar of width to or slightly larger, the convolved values within

the mortar show a gradient tilted from the horizontal, which, as noted, corresponds well to the apparent

twisted cord. But as mortar width further increases, the DOG receptive fields with centers that fall within

the mortar receive decreasing contribution to their surrounds from the tiles above and below the mortar. The

3 brightness induction effect thus diminishes until, for sufficient mortar width, the tile/mortar margins are

essentially isolated edges. The progressive diminution of the induced twisted cords is predicted rather well

by assuming the DOG operator has an to of about 1.3'. An operator much larger would have preserved the

twisted cord beyond the limits observed by Gregory and Heard (1979). This is further quantified by

Experiment 1.
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Figure 5. Two example stimuli from experiment 1, to be viewed at normal reading distance (i.e.
i approximately 50 cm) with central fixation. In a the wedge distortion in the central row appears to narrow

to the left. In b the mortar is wider and there is slight impression of distortion in the opposite direction.

I
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N In the following (Lulich & Stevens, submitted) we will describe a brightness-induction effect in

the Caf6 Wall pattern that arises with large mortar widths. One can contrive to have the bands of induced

brightness reverse the apparent direction of tilt in the Caff Wall. The reversal effect can be seen in figure

5b. Notice that in the small-width pattern (figure 5a) the mortar lines appear to deviate from the horizontal,

3 as expected in the traditional Cafd Wall effect. The two lines do not appear parallel, but rather, to define a

shallow wedge that narrows toward the left. In figure 5b, where the mortar width is increased, there is a

slight impression of a wedge pointing in the opposite direction, that is, with the right narrower than the

left. We examined this change in apparent orientation as a function of mortar width.

3 As in Morgan and Moulden's (1986) study, this reversal effect can be shown to be objectively

present in the bandpass-filtered image (see figure 7). It thus lends further support to the notion that the

local tilt illusion in the Cafd Wall is introduced largely by artifacts of retinal processing. But furthermore,

close examination of the topography of the bandpass-filtered image raises questions concerning the

I measurement of orientation, as distinct from spatial localization, of luminance changes.

Experiment 1

Method

Subjects: Three subjects took part in the experiment; all had normal or corrected to normal visual acuity.

These subjects had participated in a variety of experiments in our laboratory and were familiar with the

techniques and methods required. All were naive to the purposes of this experiment.

I Stimuli: Cafd Wall patterns of varying mortar width were generated using a Sym ,:ics 3600 Lisp Machine

and displayed on a high-resolution CRT (Tektronix 634, with P45 phosphor and 0.21 mm spot size). The

patterns were viewed from a distance of 203 cm using natural pupils. The patterns were constructed with

varying combinations of tile size and mortar width (see representative stimuli in figure 5). Two tile sizes

Atere chosen, 7.1' and 14.2'. For the stimuli based on the smaller tile size the pattern consisted of three

rows of six columns of alternating black and white tiles. The stimuli made up of the larger tile size

3 consisted of three rows of four columns. The patterns were embedded in a background grey equal to the grey

of the mortar. This grey was balanced to one-half the luminance difference between the black and white

tiles. The luminance of the white tiles were 42 ft/L, the black tiles 0.1 ft/L, and that of the mortar and

background was 22 ft/L. For each size of tile, stimuli were presented at one of ten different mortar widths.

Mortar width was varied from 0.35' to 3.5' in increments of 0.35'.

U
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The overall height of each pattern was dependent upon the size of the tiles and the particular mortar

width. The overall shape of the patterns were made rectangular by cropping the left and right vertical

borders. Cropping primarily insured that the patterns did not extend beyond the central foveal region (the

overall patterns subtended about 28' by 43'). It served to remove a distracting effect wherein the central row

would otherwise protrude past the top and bottom rows by a half-tile, forming an overall arrow-like

configuration pointing to the left or right.

U Procedure: Using a forced-choice design, subjects viewed Cafd Wall stimuli presented for 200 msec.

Subjects were told to fixate and attend to the center of the pattern. It was their task to decide the direction of

apparent convergence in the pattern, i.e. whether the vertical separation between the two mortar lines

appeared to narrow towards the left versus right side the pattern. They indicated their choice by pressing a

left or right labeled button; no feedback was given regarding their responses. The patterns wcre presented

randomly as a mirror reflection of the original pattern. Overall, 120 displays were presented in random

order, corresponding to 3 repetitions of combinations of the 10 mortar widths, 2 sizes of tile, and 2

conditions of mirror reflection.

Results and Discussion

The impression of overall tilt in the Cafd Wall pattern reversed orientation for all subjects at approximately

the same mortar width. This result is plotted for both tile sizes in figure 6. Both curves are. sigmoidal with

a zero-crossing in the vicinity of 1.75' mortar width. There was no significant effect of tile size on the

reversal effect. In each case larger standard deviations w ;e found for the larger mortar widths, consistent

with the subjects' reported impression that the reversal effect was weaker than the original Cafd wall

illusion.

Numeric convolution of these patterns, for correspondingly scaled mortar widths and DOG sizes,

reflect these results. In figure 4 the pattern dimensions in the experimental stirm-i are scaled so that the

DOG (corresponded to the smallest physiologically-predicted DOG of 1.3") had a central excitatory diameter

of 11 pixels. The 7.1' tiles of the pattern correspond to 60 pixels in the scaled pattern. The DOG operator

was zero-balanced (the amount of inhibition equaled the amount of excitation), and had a ratio of center to

surround space constants of 1:5. Figure 7a corresponds to the convolution of a Carf Wall pattern with

narrow mortar, which induces the traditional effect; figure 7b shows the convolution for a larger mortar

width, where the reversal is observed.

It is noteworth"' that the induction effects in these stimuli are so strongly scale dependent. Since

the data were gathered for mortar widths near the size of the smallest predicted physiological DOG operator,

the observed transition point for the reversal (1.75') corroborates the prediction that the smallest operator

U
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I has a central excitatory diameter of about 1.3' (Marr et al. 1980). Furthermore, the observed brightness

induction-like effect is consistent with Morgan and Moulden's (1986) conclusion that it is a consequence of

bandpass filtering.

CAFE UALL REVERSAL
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Figure 6. Graphs of tilt direction judgements, for small tiles in a and large tiles in b. In each case subjects
experienced a reversal in the direction of apparent convergence for mortar approximately 1.75'.

With reference to figure 7a, a mortar width of 9 pixels (equivalent to 1.0), results in a convolution

where the dark and light bands of Fraser's twisted cords are apparent in the mortar, in accordance with

Morgan and Moulden's (1986) observation. The light ridges are tilted slightly from the horizontal and span

diagonally across the mortar to connect the comers of the white tiles above and below the mortar.

Likewise, the dark ridges in the mortar span diagonally between corners of the black tiles. For a wider

mortar of 18 pixels (equivalent to 2.0', and convolution with the same diameter DOG, the traditional
twisted cord arrangement of bands is extinguished, and replaced by a fainter induction effect. Light bands

appear now span the mortar between the black tiles (and likewise dark bands between the white tiles).

These induction bands or bars are seen at a steeper angle to the horizontal than those induced at smaller

mortar widths. As mortar widths is further increased the induction effects spanning the mortar is further

diminished and becomes negligible for mortar widths about twice the size of the DOG operator.I
I
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Figure 7. DOG convolution of a Caf6 Wall pattern where the mortar is narrower (in a) and wider (in b) than
the DOG central excitatory diameter. Numeric values in c and d correspond to regions indicated by
rectangles in a and b.

The Influence of Elongated Receptive Fields

A DOG operator of appropriate scale produces a distribution of convolution values that is distorted in a

manner that resembles the apparent twisted cords. Specifically, the geometry of the convolution values,

particularly the induction of diagonal gradients into the mortar corresponds well with the impressions of

illusory tilt. But how is the geometry detected? The ridges and troughs Morgan and Moulden (1986)
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I discuss are initially implicit in the DOG-convolved image. While there is rather broad consensus on how

to model the circular-symmetric operators at the retina, there is no correspondingly quantitative model

available of the measurement and encoding of tilt. It is generally expected, but still conjectural, that

simple cells perform the encoding, for example.

There are many distinct ways to compute the orientation of a ridge or trough within a two-

dimensional field or array of values. One approach is to locate the points of instantaneous local maximum

or minimum according to some spatial criterion and to subsequently fit a line or curve through these points.

Watt and Morgan (1985) propose measuring the central moments, however their proposal is restricted to a

one-dimensional signal; the extension to an arbitrary two-dimensional signal is not straightforward. But

where the luminance signal is approximately one-dimensional, such as midway along a ridge-like strand ofIthe twisted cord the luminance signal could be approximated as a bar. The orientation of the ridge or trough

would be the local tangent to the locus of local maximum or minimum activity (i.e. zero-bounded regions

of activity). Another computationally distinct method is to summate the convolution values within

elongated (orientation-selective) receptive fields of varying orientation, and to select that receptive field

having maximum response (e.g. Tyler & Nakayama 1984). Clearly this latter computation would benefit

from using antagonistic even-symmetric subfields, so that the operator would produce zero net response in a

constant field. The relationship between this computational method and cortical receptive fields is rather

apparent. The former method, based on a local extremum (or centroid) operator, is less easily related to

neurophysiology.

Since simple and complex cells of the striate cortex are the first cells in the visual pathway to

demonstrate orientation selectivity (Hubel & Wiesel 1962), it is reasonable to suspect that they are involved

in the determination of the orientation of Fraser's twisted cords and the mortar line (Morgan & Moulden

1986). The following experiment further supports the suggestion that striate cells underlie the orientation

measurement.

I
Experiment 2

Hammond and MacKay (1981, 1983a) have shown that length summation in simple cells is highly

dependent on contrast along the axis of the receptive field. For stimuli having constant contrast along their

lengths, length summation was found to be substantially linear. Additions of line gaps of reduced

(background) contrast lowered the response of the cell by an amount predictable by length summation

considerations. However, reduction of contrast below background (reversed contrast) produced an
unpredictably large response decrement. The term "gating" inhibition was given to this phenomenon to

U
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I distinguish it from simple removal of excitatory drive, and appears to be a property of complex cells as well

(Hammond & MacKay 1983b, 1985). Brookes and Stevens (1988) have used this effect to examine the role

of striate cells in gating the signalling of orientation in groups of dots. We have modified the Cafd Wall

patterns by adding tiny dots of opposite contrast to Fraser's twisted cords. The prediction is that these dots

would gate-off the units that would otherwise assert the orientation of the cords in the unmodified pattern.

Method

Subjects: Forty naive subjects participated in this experiment. All subjects had normal or corrected to

normal visual acuity.

I Stimuli: Two different displays (stimuli I and 2) were constructed using the same apparatus used in the

previous experiment. For both stimuli the background was a neutral grey that matched the luminance of

the mortar line (8.2 ft/L). The individual Cafd Wall patterns in both types of display were composed of

seven columns by six rows of alternating black and white tiles, each 10.3' on a side. Each Cafr Wall

pattern subtended 72.1" horizontally by 61.8' vertically. The width of the mortar in all patterns was 1'.

The luminance of the white tiles was 15.2 ft/L and the black tiles was 4.1 ft/L. The Michelson contrast

across the tiles was 57.5%.

Some Caf6 Wall patterns had white or black dots positioned in the mortar. Each dot was a

rectangle 1' by 1.5' and positioned at the center of the region of overlap between tiles of similar contrast.

Stimulus I presented a traditional Cafd Wall pattern and two variants on the basic pattern induced by the3 included dots, so that subjects could rank-order the relative strength of the illusions as a function of the

variation we introduced. Stimulus 2, shown in a subsequent series of presentations, provided a follow-on to

the basic result provided by stimulus 1.

Stimulus 1 was arranged as in figure 8 and contained three Cafd Wall patterns (la, lb and Ic).

Caf6 Wall pattern Ia contained -- rtar dots of the same contrast sign as the tiles above and below them. The

white dots had a luminance of 22.2 ft/L and the black dots 4.1 ft/L. The Michelson contrast between the

white dots and the white tiles was 18.5%. The Michelson contrast between the black dots and the black

tiles was 11.8%. Caf6 Wall pattern lb used mortar dots of opposite contrast compared to those in patternU Ia. The luminance of the white and black dots was the same as pattern Ia. The Michelson contrast

between the white dots and the black tiles was 68.7% and between the black dots and the white tiles was

3 90%. Cafd Wall pattern Ic contained no dots.

I
I
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3 Stimulus (2), as shown in figure 9, was composed of two Caft Wall patterns (2a and 2b).The Caf6 Wall

pattern (2a) was the conventional pattern and contained no dots, while pattern (2b) had dots in the opposite

3 contrast configuration. The luminance of the black and white dots equalled that of the black and white tiles.

The Michelson contrast between the white dots and the black tiles was 57.5% and between the black dots

U and the white tiles was 61.7%.

Procedure: Twenty subject viewed stimulus I and twenty different subjects viewed stimulus 2. Each subject

was seated 120 cm from the stimulus display. To introduce the illusion, each subject was first shown the

Z6llner illusion and asked to describe the figure. When the subject mentioned the apparent convergence of

the parallel lines, it was explained that convergence of the mortar lines in the Caf6 stimuli would similarly

be seen, to varying degrees. Next the subject observed the stimulus (1 or 2) and was instructed to rank order

3 apparent convergence of the mortar lines in the presented Caf6 Wall patterns. Each subject was given as

much time as necessary, but asked to perform the task quickly and to rely primarily on initial impressions.U
Table 1: Stimulus I

Rank orderings

3 Case Most Mid Least Total

A 0 0 20 20

3 B 16 4 0 20

C 4 16 0 20

I Total 20 20 20

I
Table 2: Stimulus 2

3 Rank orderings

* Case Most Least Total

A 0 20 20

3 B 20 0 20

Total 20 20

I
I
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U Results and Discussion

5 Table I shows the rank-ordering of frequency data for the three different versions of the Cafd Wall in

stimulus 1. Chi-squared analysis showed that the null hypothesis (i.e. the convergence strength of each3 pattern is equal) could be rejected (Q2 = 81.5, p < .001, d.f. = 4). A X2 of 81.5 demonstrates a highly

significant effect. Notice that Cafd Wall pattern (la), the pattern with dots of like contrast always ranked as5 having the weakest convergence illusion. Caf6 Wall pattern (lb), the pattern with dots of opposite contrast,

was ranked as the strongest 80% of the time. Table 2 show the rank-ordered data for stimulus two. A

strong effect is clear. Chi-squared analysis showed that the null hypothesis could be rejected (Q2 = 40, p <

.001, d.f. = 1). Notice that lowering the contrast of the dots resulted in a perfect preference ordering.

5 With the addition of dots of opposite contrast to the center of Fraser's twisted cords, the overall

impression of tilt of the mortar lines was significantly weakened. In addition, the presence of a dot of like

3 contrast but higher luminance enhanced the impression of tilt. McCourt (1983) produced similar effects on

apparent convergence by manipulating the contrast sign along extended segments of the mortar. His

stimuli were designed to distinguish between the contributions of brightness induction and those of Gregory

and Heard's (1979) border locking notion. McCourt found that the Cafd Wall convergence effect is

weakened when the mortar is darkened in the segments bounded above and below by black tiles and

lightened where bounded by white tiles (leaving neutral grey in the transition regions where tiles have

opposite contrast). While this reduces the potential for brightness induction in those regions, it also3 removes the bar-like features that provide (piecewise) contour continuity along the mortar. In our stimuli

the introduction of point-like contrast reversals are likewise highly effective in disrupting the contour

3 organization along the mortar. The facilitatory effect provided by point-like contrast enhancement- is

similarly consistent with McCourt's (1983) findings using extended mortar segments. While global

continuity of contrast along the mortar is not necessary, as Fraser (1908) originally observed, continuity of

contrast within the individual bar-like segments that comprise the braided strands of the twisted cord is

important. That is, to disrupt the overall effect it is sufficient to disrupt the contrast continuity within the

individual white or black bar-like segments (those bounded above and below by tiles of same contrast). As

Hammond and MacKay found, contrast reversal along the length of the bar is much more potent than a

3 simple gap. The results of experiment 2 thus suggests that mechanisms with a gating non-linearity similar

to that observed in striate cells contribute to the piecewise measurement of tilt and underlie their integration

3 along continuous contours.

3
U
I
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3 2.3 Asserting Orientation between Discrete Items

3 One can readily see structure in patterns made up of discrete points where the structure comes from the

spatial relationships of the points in the pattern. For example, figure 10 shows a simple dot pattern known3 as a Glass pattern (Glass 1969). Glass patterns are constructed by superimposing onto a random dot pattern

a copy that has been transformed, e.g. by scaling or rotation. Each dot and its transformed counterpart in

the superimposed copy defines a dot pair. The radial pattern in figure 10, for example, is the result of a

scaling transformation. In order for the global organization to emerge from such patterns the orientation

conesponding to the lines defined by the dot pairs must be found.

I:

I

1 Figure 10. A Glass pattern used for examining the detection of local pairing orientation.

I
There is no general consensus on how this orientation is extracted. Several competing theories

have been proposed, differing primarily in terms of the extent to which the component dots are treated as

individual elements. The Gestalt investigators described perceptual grouping in terms of individuallyI
I
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I marked items that are grouped explicitly on the basis of their attributes, proximity and their spatial

arrangement. The notion of establishing discrete grouping tokens was tacit, by and large, in the Gestalt

3 demonstrations of similarity grouping (Wertheimer 1923; Koehler 1929; Koffka 1935). Later, it was

specifically proposed that groupings involved "place markers" (Atmeave 1974) or "place tokens" Man"

i (1976, 1982), which individually carry information about position and attributes such as contrast, color,

size and orientation (see also Ullman's (1979) grouping tokens for motion correspondence). Pairings

5 between adjacent place tokens are represented by "virtual lines" (Attneave 1974; Mart 1976, 1982; Stevens

1978). Similarly, Caelli and Julesz (1978) discuss "local dipoles" between neighboring dots in texture

discrimination. Virtual lines are not illusory lines in the sense that subjective contours are illusory

intensity edges; they do not exhibit contrast phenomena. Instead, perceived pairings make explicit the

orientation, position, and separation of the similar and adjacent elements. Attneave (1955, 1974) has

demonstrated position and orientation judgements that seem mediated by place tokens, and Beck and

Halloran (1985) similarly suggest that virtual lines underlie some vernier acuity judgments. It is not clear,

however, whether the position markers in attentive judgments of relative position and orientation under

focal scrutiny are the same "place tokens" that have been proposed for early visual processing of texture.

I IThe alternative model for grouping is that the individual dots contribute to the local orientation

only implicitly, in terms of their spatial proximity and their luminance energy. A closely-spaced pair of

dots, or a chain of collinear dots, has a power spectrum similar to that of an isolated line segment for

spatial frequencies less than I/s, where s is the dot spacing. Low spatial frequency filtering would therefore3 provide a means for extracting the local orientation signal, presumably using cortical cells tuned to both

orientation and spatial frequency (Ginsberg, 1973). Recently, a model for dot grouping, based on Gaussian5 blur, has also been proposed that shares similarities with earlier models operating in the luminance domain

(Smits & Vos 1986).

IThe even-symmetric cortical simple cell has been specifically proposed as responsible for the local

orientation measurement: the dot pair would be roughly equivalent to a continuous line of equal total energy

presuming a linearly summating receptive field. The structure of the dot pattern would emerge without need

for explicitly marking the constituent dots as tokens. Glass proposes that the local orientation is derived by

correlating the activity of simple cels over small neighborhoods (Glass 1969; Glass & Perez 1973; Glass

& Switkes 1976; Glass 1979). Zucker (1983) proposes a cooperative computation whereby the broad3 orientation tuning curves of individual receptive fields can be sharpened by combining the outputs of

individual cells over local neighborhoods. Simple cells whose receptive fields are oriented with the dot

pairs would presumably respond more vigorously, on average, than those cells at other orientations, so that

local correlation (or a similar computation) of their activity would reveal the orientation of the dot pairs in

each vicinity. Similarly, Caelli and Julesz (1978) suggest that linear arrangements of dots in texture are

I
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3 detected by neural units with elongated receptive fields applied to the retinal image, either "a single neural

feature extractor of the Hubel and Wiesel type", or a unit that "measures the quasicollinearity of adjacent

3 dipoles by combining single neural units of a retinal neighborhood with slightly different orientaion

sensitivity" (Caelli & Julesz 1978, p. 172; see also Caelli et al. 1978; Julesz 1981). Prazdny (1984) also

3 suggested that the dot pairings in Glass patterns are detected by "... measurements in the spatial and energy

domain rather than logical operations on symbolic descriptions" (see also [Prazdny 1986]).

I The simple cell model, while attractive in its ability to relate a grouping effect to underlying

neural mechanisms, seemingly cannot account for certain effects. Two effects merit discussion, the first

concerning spatial frequency filtering and the second grouping on the basis of contrast and color similarity.

Both effects, which are contrary to the simple cell model, are reviewed in the following.
I

In (Stevens & Brookes 1987) we presented various arguments against using existing models of

3 simple cells for dot grouping. The first of these arguments concerns the theory that organization is carried

exclusively by low spatial frequencies. It has been shown by Carlson et al. (1980) and Janez (1984) that

dotted-line organization can be seen in high-pass spatial frequency filtered patterns. They conclude that

some process "more abstract" than low spatial frequency-tuned channels is involved. In a similar paradigm,

we generated dot patterns with only high spatial frequency content (Stevens & Brookes 1987). The

individual items were 3x3 pixels on a side, each a black-and-white checkerboard with the center pixel the

same grey value as the background grey. The argument against simple cells is that the stimuli have

Sinsignificant power in the range of spatial frequencies at which a correspondingly scaled simple cell would

respond. Using energy balanced checkerboards we found that the impression of local pairings and

3 parallelism is apparent when the correlated dots were separated by as much as 30 arc min which is beyond

the range that simple cells are believed to exist foveally. In a similar experimental design, Prazdny (1984)

reported, contrary to our finding, that when a Glass pattern is composed of individual Laplacian-like dots

(e.g. a central white point surrounded by a ring of darker points) that the apparent organization of the pattern

is lost when the mean luminance of the Laplacian-like dots match the background grey. We likewise found

this effect, but attribute the problem to the weak energy of the tiny Laplacian-like features used, particularly

when presented in the parafovea where they could barely be resolved. When we scaled the Laplacian-like

3features linearly with eccentricity, we found that the organization of the Glass pattern was successfully

preserved when the mean luminance of the individual features matched the background (Stevens & Brookes3 1987). This evidence, at the time, convinced us of a non-simple cell contribution to the preattentive

extraction of structure among tokens in texture.

3 The second line of evidence against the simple cell model for dot grouping concerns the preference

for similarity among the items that are grouped. Similarity preference, first described by as a Gestalt

I
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U organizing principle, was demonstrated by Stevens (1978) in rivalrous Glass patterns. Dot triples were

presented rather than mere dot pairs, where two of the three dots were of similar contrast but dimmer than

the third. Contrary to contrast summation models, observers saw the organization carried by pairings of

low contrast dots. This general finding was replicated and extended to color similarity in (Stevens &

3Brookes 1987), further strengthening the argument for token-based grouping in texture, rather than a process

that operates purely in the luminance-energy domain.

I The above two lines of argument against simple cells constituting the underlying grouping

mechanism are ultimately based on assumptions about the linearity with which contrast energy is

summated by simple cells (Hubel & Wiesel, 1962; Bishop, Coombs & Henry, 1971; Bishop & Henry,

1972). The major deviation from linearity is expected in length and width summation (Heggelund, Krekling

3l & Skottun 1983; Henry, Goodwin & Bishop 1978; Webster & DeValois 1985), presumably due to a

Gaussian-shaped weighting envelope, such as modelled by a Gabor filter (Daugman 1985) (see also3Movshon, Thompson & Tolhurst 1978 regarding superposition). We will summarize this view of the

simple cell as assuming linear-weighted spatial summation.

I1 Recent neurophysiological results show that simple cells are not strictly linear summation devices.

Heggelund et al. (1983) showed that excitation and inhibition in simple cells varied nonlinearly across the3receptive fields. Their results indicated that there is some overlap of the excitatory and inhibitory fields.

Hammond and MacKay (1983) found that while a long bar will stimulate a simple cell, the same bar, with

3the addition of a point of opposite contrast anywhere along the bar, will not. The effect is more like a

logical gating than summation since a small point will turn off the response of even a very long bar. This

3 property was found in each simple cell that was tested. The term "gating" inhibition was given to this

phenomenon to distinguish it from simple removal of excitatory drive, and appears to be a property of

3complex cells as well (Hammond & MacKay 1983b, 1985).

This gating property of simple cells provides a novel way of testing the role of simple cells in dot3 grouping processes. If simple cells are involved in grouping then we should be able to nullify that

grouping by placing a point of opposite contrast between each pair of points in the pattern. This is not

3conclusive evidence that simple cells are the mechanism involved, but since other cells, such as complex

cells were not found to have this property it would constitute very strong evidence. The following3experiment (Brookes & Stevens, in preparation) shows that dot groupings can in fact be nullified by

exploiting this property.

I
I
I
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* Method

3 Sdmuli: The stimuli consisted of three types of modified Glass patterns, each made up of triples of dots. In

each case the triples were a pair of white dots and a single black dot, all presented against a grey3 background. The dot pairs were oriented either in radial, concentric or random orientation relative to the

pattern center. For each of these three global organizations there were two possible positions for the

opposite-contrast (black) dot associated with each pair of white dots. Manipulating the position of the

opposite-contrast dot was intended to control for the possibility that these dots might simply be distractors

or noise. In the first case, the black dot was placed midway between the two white dots of each pair, the

analogue to the stimuli used by Hammond and MacKay. In the second, the black dot was placed adjacent to

the pair at a distance of half the spacing of the pair. In this control case the opposite-contrast dots were3 displaced to lie adjacent to, rather than between, the paired dots of like contrast. The separation between dot

triples was approximately 34' with the individual dot pairs separated by approximately 9'. Each Glass3 pattern was constructed from an underlying set of points of homogeneous density with no discernible

structure (see Stevens 1978 for method). Thus the overall pattern consisted of an organized collection of dot

triples, each consisting of two white dots in either radial, concentric or random organization, and the third

black dot in either the between or adjacent position relative to the pair. The stimuli are shown in figure

11. The stimuli were generated by a Symbolics 3675 Lisp Machine and displayed on a Tektronix 690SR

3 monitor.

3 Procedure: Eight subjects participated. All but one were naive to the purpose of the experiment. The

subjects were seated 2m from the stimulus display. A trial consisted of the presentation of one of the six3 conditions (three types of dot patterns with 2 possible positions of black dots each) chosen randomly, and

the task was to decide which of the three patterns was present. Initially, a small fixation cross was

presented for I sec, after which the dot stimulus was presented for 200 msec without masking. Subjects

were to respond to this stimulus by pressing one of three buttons on a mouse pointing device. Each was

given 20 repetitions of the 6 stimuli, for a total of 120 trials.

ResultsI
Table 3 shows the data for the eight subjects. In most cases there was a strong tendency to see the pattern3 correctly for stimuli in which the opposite contrast dot appeared adjacent to the dot pairs. In this case the

mean percentage of correct responses was 94% for the concentric case, 78% for the radial case and 92% for

the random case. For the condition where the opposite contrast dot appeared between the paired dots these

means were lowered to 28% for the concentric, 31% for the radial. For the random case the mean in this

case was 85%.

I
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I between condition induced a reversal, where subjects indicated the radial pattern when the concentric pattern

was presented and the concentric pattern when the radial pattern was presented. In some cases this

constituted an almost complete perceptual reversal. In others simply a greater number of responses in the

direction of the reversal than for the correct pattern.

Discussion

I IDespite the earlier evidence against the model that dot groupings are performed by simple cells, this

cxperiment provides, we believe, strong evidence that implicate their involvement, in much the manner

originally proposed by Glass and Prazdny. The extinction of apparent organization among the white dots

by the inclusion of black dots at the midpoint between each pairing is consistent with the gating

nonlinearity finding reported earlier and, as yet, has not been associated with any other mechanism.

In addition, there is a secondary effect of apparent reversal, such that a radial Glass pattern may

appear concentric when the opposite contrast dots are placed between the original dot pairs, and vice versa,

for most observers we tested. This shows that is there not only a gating or suppression of the output of

striate cells by the opposing contrast but also a facilitation of the perpendicular orientation. This is similar

to the subtle effect shown in (Glass & Switkes 1976) in which paired black and white dots are perceived as

having a roughly orthogonal organization to that suggested by the pairings. Glass (1979) proposes that

those simple cells positioned between the black and white dots and oriented perpendicularly to the dot pair3 may be weakly stimulated. While perpendicularly oriented receptive fields may contribute to the phantom

impression of orthogonal orientation, we should note that more is likely involved since it the experiment

we found that few subjects experienced complete reversals in apparent organization. But overall, we

conclude that ianipulation of apparent organization by the position of the opposite contrast dots is strong

evidence implicating contrast-summation receptive fields in the extraction of the local orientation

mechanism.

3 We are still faced with the rather convincing arguments reported earlier against simple cells being

the mechanism used for grouping discrete points. These, recall were the demonstrations of apparent3 organization in energy-balanced dot patterns (e.g. made of Laplacian-shaped luminance features) and the

observed preference for similarity in dot groupings.U
I
U
I
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U dot in triple dot not in triple

subject con nid ran con nid ran

3 1 con 20 0 0 2 8 10

nid 1 14 5 12 7 1

ran 1 0 19 1 0 19

2 con 20 0 0 1 19 0

II ra 0 20 0 16 1 3

ran 0 0 20 1 0 19

3 con 18 1 1 7 5 83 ni 0 19 1 7 8 5

ran 0 1 19 0 2 18

1 4 con 17 1 2 4 0 16

ii 0 6 14 10 3 7I
ran 0 0 20 0 0 20

5 con 20 0 0 2 17 1

Mld 1 15 4 20 0 0

ran 1 1 18 2 3 15

6 con 19 1 0 0 11 9Ia 0 16 4 16 3 1

ran 1 1 18 1 1 18

7 con 20 0 0 16 0 4

3ad 0 18 2 6 12 2

ran 1 4 15 1 5 14

8 con 16 1 3 12 3 5
IMd 1 16 3 1 16 3

ran 1 0 19 2 5 13

I Table 3. Raw data for experiment. Rows represent responses for a particular pattern.

I
I
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U We have already cited neurophysiological evidence that simple cells do not perform strict linear

summation when presented with opposite contrast within their excitatory subfields. The energy-balanced

3 dot pattern demonstrations rested on a similar assumption about the summation properties of simple cells.

It was assumed that contrast features having only very high spatial frequency content would not provide

effective input to receptive fields sufficiently large as to span two such features. While apparently valid on

the basis of optimal spatial frequency tuning of cortical receptive fields as a function of their size, one

cannot rule out the possibility that large cortical receptive fields receive input from very small LGN fields.

If that were the case, the various demonstrations involving high spatial frequency stimuli would be invalid.

3 The second line of evidence concerns similarity grouping. We believe that the various

demonstrations of similarity preference are valid, and this must be reconciled with the underlying role of

elongated cortical cells in detecting or encoding the pairing orientation.. The preference for color similarity

demonstrated by rivalrous Glass patterns (Stevens & Brookes 1987) must either be directly attributed to3 color specificity of corresponding cortical receptive fields or associated with later selection processes. Since

pairings can also be made between dots of similar contrast, at least part of the selection would presumably

be performed later.

Prazdny (1986) suggests that simple cells detect orientations within separate feature spaces. His

example of feature spaces is the separation of dark and light points due to the separation of the on and off

cells in the retina. This idea may account for many of the properties of dot grouping if we broaden the

notion of feature spaces so that it includes each of the features that seem to control the grouping. Along

with each of these feature spaces must be a mechanism tuned to that property so that it may be

I distinguished.

2.4 Connecting Contour Fragments across Gaps

One of the first problems in bootstrapping forms is to connect fragments of the boundary that, for one3 reason or another, are disconnected. It seems that the size of the gap can have a great effect on how the

constituent parts are treated. For large gaps the parts are seen as separate units, while for sufficiently small

gaps the parts form a single unit which in some ways is equivalent to a continuous contour. The critical

size of the gap seems to scale with the size of the contour fragments. Some of the problems are: what

properties are retained by the individual pieces when they are connected, which are lost, and what are the

relationships of this property to oriented receptive fields?

I
I
I
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I Within a critical distance, we have found that separate pieces of contour are treated as single

entities. This behavior would be expected at the limit of resolution where the gap may simply be ignored,

3 but the property seems to scale with the size of the contour segments.

3 Recently, Julesz (1986) found that there are two critical distances in texture discrimination. The

first, which Julesz calls delta, is the distance between texture elements. The second, epsilon, is the distance

between the pieces that make up the individual texture elements. The significance of the epsilon distance is

that texture elements within epsilon of each other are combined into a single element. These distances are

relative to the size of the texture element and are thus similar to the property we found with regard to

contour aggregation. An example of this property is shown in figure 12. In figure 12a the gap between the

crosses is small and the figure is seen as a grid. In figure 12b the gap is greater than the critical distance so

the figure is seen as a collection of crosses. In figures 12c and 12d the grids have been doubled in size with

the gaps doubling as well. In figure 12c the grid is seen while in figure 12d the crosses are seen. Thus the

critical distance scales with the size of the crosses. These demonstrations, of course, are preliminary and

will require formal experiments. Tentatively, however, we conclude that the ability to group across gaps is

dependent on the sizes of the constituent parts in the grouping. When the crosses are skewed so that the

ends do not line up there is a similar critical distance for the gaps, so that if the gap is smaller a grid is

seen, and if larger, the crosses are seen (figure 13). This distance seems to be smaller than that of the

collinear crosses, but careful experiments must be performed before this is known.

Kulikowski (1969) has shown a length-dependent effect on contrast threshold for detection of a

straight line up to a length of 60 arc min (and corresponding width summation up to about 6 arc min).

This 60 arc min summation area is presumed to be the overall span of facilitatory interaction among

collinear subunits, each about 9 arc min in length (Andrews 1967a, b; Bacon & King-Smith 1977). Thus,

there is psychophysical evidence for facilitation across collinear receptive fields. This detection is degraded

by gaps more than expected by linear summation (Andrews 1967"; Sakitt 1971). However, it is possible

that this intolerance to gaps has no relation to the present problem since our stimuli are well above the

detection threshold.

Recent anatomical and physiological work supports our findings. Gilbert and Wiesel (1979, 1983)

have shown that single striate cortical cells have dendrites that are located at some distance from the cell3 body. Ts'o et al. (1986b) demonstrated that interactions between neurons in different cortical columns are

constrained by orientation. Thus, stimuli of the same orientation but in different retinal locations mutually

reinforce activity in the same groups of neurons. In some cases, parallel orientations may be reinforced, but

in others, collinearity may be signalled.

U
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I The property of connecting contour fragments into a single unit is suggestive of the notion of an

"emergent feature". Pomerantz et al. (1977) suggested under certain circumstances discrete items can

combine into single elements and take on properties that the individual elements did not posses alone.

Thus, discrimination between two elements may be facilitated when an emergent feature is present in one

element but not in the other. Another way to state this is that discrimination means the detection of

emergent features.

I Treisman (1984) extended this work by showing that the presence of an emergent feature was

sufficient to distinguish an object from a field of objects lacking that feature. She further showed that the

emergent property was distinct from the individual parts that formed the feature. For example, when the

visual system is overloaded by many distractors consisting of elements in the shape of a "V", the closure

3 property can be transferred from a circle to a conjunction of features forming an illusory triangle. The

independence of the property from the object suggests a separate level or map at which the emergent feature

is being detected.

The demonstration above in figure 12 shows that even though the gaps between the crosses are

still apparent there is a level at which the gaps are ignored, resulting in a larger connected form. This larger

form acts as an emergent feature, which can be demonstrated in the same manner in which Treisman (1984)

demonstrated other emergent features. Treisman showed that an object can be distinguished preattentively

from a field of similar objects if the given object differs from the field in a single feature. This is true for

3 primitive features as well as emergent features.

I!
I
I
I
I
I
I
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